Skip to main content
Log in

Observation of Optical Bistability in a Polaritonic Material Doped with Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We study the optical bistability and multistability in a defect structure doped with polaritonic materials and three-level nanoparticles. It is realized that the threshold of optical bistability can be manipulated by some controllable parameters such as Rabi frequency, line width of upper level, and thickness of defect structure. Due to dense doping of three-level nanoparticles, the dipole-dipole interactions (DDI) between nanoparticles become important. Therefore, the DDI has been considered as an interesting mechanism for transition from optical bistability to multistability. The line width effect of upper level and thickness of defect structure on threshold of optical multistability has also been investigated. We hope that our proposed model may be useful for developing the future all-optical devices in nanoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Y, Saldana J, Zhu Y (2003) Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys Rev A 67:013811

    Article  Google Scholar 

  2. Wu Y, Yang X (2004) Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys Rev A 70:053818

  3. Wu Y, Yang X (2005) Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys Rev A 71:053806

    Article  Google Scholar 

  4. Wang Z, Yu B (2015) Precision localization of single atom via spontaneous emission in three dimensions. Quantum Inf Process 14:4067–4076

    Article  CAS  Google Scholar 

  5. Wang Z, Yu B, Zhu J, Cao Z, Zhen S, Wu X et al (2012) Atom localization via controlled spontaneous emission in a five-level atomic system. Ann Phys 327:1132–1145

    Article  CAS  Google Scholar 

  6. Yang W-X, Chen A-X, Si L-G, Jiang K, Yang X, Lee R-K (2010) Three coupled ultraslow temporal solitons in a five-level tripod atomic system. Phys Rev A 81:023814

    Article  Google Scholar 

  7. Tian S-C, Wan R-G, Shan X-N, Tong C-Z, Qin L, Ning Y-Q (2015) Controllable cavity linewidth narrowing via spontaneously generated coherence in a four level atomic system. Opt Commun 356:155–160

    Article  CAS  Google Scholar 

  8. Si L-G, Lü X-Y, Hao X, Li J-H (2010) Dynamical control of soliton formation and propagation in a Y-type atomic system with dual ladder-type electromagnetically induced transparency. J Phys B Atomic Mol Phys 43:065403

    Article  Google Scholar 

  9. Si L-G, Yang W-X, Lü X-Y, Hao X, Yang X (2010) Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λatomic system under Raman excitation. Phys Rev A 82:013836

    Article  Google Scholar 

  10. Fountoulakis A, Terzis A, Paspalakis E (2006) Coherent phenomena due to double-dark states in a system with decay interference. Phys Rev A 73:033811

    Article  Google Scholar 

  11. Yang W-X, Hou J-M, Lin Y, Lee R-K (2009) Detuning management of optical solitons in coupled quantum wells. Phys Rev A 79:033825

    Article  Google Scholar 

  12. Yang X-x, Li Z-w, Wu Y (2005) Four-wave mixing via electron spin coherence in a quantum well waveguide. Phys Lett A 340:320–325

    Article  CAS  Google Scholar 

  13. Zhou F, Qi Y, Sun H, Chen D, Yang J, Niu Y et al (2013) Electromagnetically induced grating in asymmetric quantum wells via Fano interference. Opt Express 21:12249–12259

    Article  Google Scholar 

  14. Koser AA, Sen P, Sen PK (2009) Effect of group velocity dispersion on femtosecond pulse evolution in quantum well waveguide structures. Superlattice Microst 46:656–663

    Article  CAS  Google Scholar 

  15. Litvinov AN, Barantsev KA, Matisov BG, Kazakov GA, Rozhdestvensky YV (2013) Static and dynamic phase-dependence of dark resonances and its dispersion features in double tunneling-coupled quantum wells. Opt Commun 305:155–163

    Article  CAS  Google Scholar 

  16. Liu J-B, Liu N, Shan C-J, Liu T-K, Huang Y-X (2010) Slow optical soliton pairs via electron spin coherence in a quantum well waveguide. Phys Rev E 81(3):036607

    Article  Google Scholar 

  17. Liu S, Yang W-X, Chuang Y-L, Chen A-X, Liu A, Huang Y et al (2014) Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference. Opt Express 22:29179

    Article  Google Scholar 

  18. Luo X-Q, Wang D-L, She Y-C, Fan H, Liu W-M (2014) Adjustable electromagnetically induced transparency and absorption, optical controlled-phase gate in semiconductor quantum wells. Eur Phys J D 68:89

    Article  Google Scholar 

  19. Phillips M, Wang H (2004) Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells. Phys Rev B 69(11):115337

    Article  Google Scholar 

  20. Chen Y, Deng L, Chen A (2014) Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence. Ann Phys 353:1–8

    Article  Google Scholar 

  21. Evangelou S, Yannopapas V, Paspalakis E (2012) Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys Rev A 86(5):053811

    Article  Google Scholar 

  22. Evangelou S, Yannopapas V, Paspalakis E (2014) Transient properties of transparency of a quantum system near a plasmonic nanostructure. Opt Commun 314:36–40

    Article  CAS  Google Scholar 

  23. Hatef A, Sadeghi SM, Singh MR (2012) Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems. Nanotechnology 23:065701

    Article  Google Scholar 

  24. Paspalakis E, Kallos E, Yannopapas V (2015) Controlled Interaction of a Four-Level Quantum Emitter with a Plasmonic Nanostructure. J Phys Conf Ser 633:012063

    Article  Google Scholar 

  25. Cox JD, Singh MR, Gumbs G, Anton MA, Carreno F (2012) Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Phys Rev B 86:125452

    Article  Google Scholar 

  26. Hatef A, Singh MR (2010) Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys Rev A 81(6):063816

    Article  Google Scholar 

  27. Singh MR (2004) Anomalous electromagnetically induced transparency in photonic-band-gap materials. Phys Rev A 70:033813

    Article  Google Scholar 

  28. Singh M (2007) Dipole-dipole interaction in photonic-band-gap materials doped with nanoparticles. Phys Rev A 75(4):043809

    Article  Google Scholar 

  29. Singh M (2007) Controlling spontaneous emission in photonic-band-gap materials doped with nanoparticles. Phys Rev A 75(3):033810

    Article  Google Scholar 

  30. Singh MR (2007) Switching on and off two-photon absorption in nanoparticles doped in polaritonic materials. Phys Rev B 75:155427

    Article  Google Scholar 

  31. Singh MR (2007) The effect of the dipole–dipole interaction in electromagnetically induced transparency in polaritonic band gap materials. J Mod Opt 54:1739–1757

    Article  CAS  Google Scholar 

  32. Singh MR (2008) Inhibition of two-photon absorption due to dipole–dipole interaction in nanoparticles. Phys Lett A 372:5083–5088

    Article  CAS  Google Scholar 

  33. Singh MR (2008) Study of nonlinear effects in photonic crystals doped with nanoparticles. J Phys B Atomic Mol Phys 41:135401

    Article  Google Scholar 

  34. Singh MR (2008) Polarization catastrophe in nanostructures doped in photonic band gap materials. Appl Surf Sci 255:653–655

    Article  CAS  Google Scholar 

  35. Singh MR (2009) Dipole-dipole interaction in nanoscale photonic quantum wells. Phys Status Solidi (a) 206:956–959

    Article  CAS  Google Scholar 

  36. Singh MR (2009) Transparency in nanophotonic quantum wires. J Phys B Atomic Mol Phys 42:065503

    Article  Google Scholar 

  37. Singh MR, Schindel DG, Hatef A (2011) Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system. Appl Phys Lett 99:181106

    Article  Google Scholar 

  38. Schmidt H, Ram RJ (2000) All-optical wavelength converter and switch based on electromagnetically induced transparency. Appl Phys Lett 76:3173

    Article  CAS  Google Scholar 

  39. Hendrickson S, Weiler C, Camacho R, Rakich P, Young A, Shaw M et al (2013) All-optical-switching demonstration using two-photon absorption and the Zeno effect. Phys Rev A 87(2):023808

    Article  Google Scholar 

  40. Dong C, Wang T, Jin Y, Li X, Wang B, Tang J (2014) All-optical analog to electromagnetically induced transparency effects for multiple wavelengths in a silicon photonic crystal coupled cavity system. Opt Commun 315:26–31

    Article  CAS  Google Scholar 

  41. Joshi A, Brown A, Wang H, Xiao M (2003) Controlling optical bistability in a three-level atomic system. Phys Rev A 67(4):041801

    Article  Google Scholar 

  42. Li J-H, Lü X-Y, Luo J-M, Huang Q-J (2006) Optical bistability and multistability via atomic coherence in an N-type atomic medium. Phys Rev A 74(3):035801

    Article  Google Scholar 

  43. Chang H, Wu H, Xie C, Wang H (2004) Controlled Shift of Optical Bistability Hysteresis Curve and Storage of Optical Signals in a Four-Level Atomic System. Phys Rev Lett 93(21):213901

    Article  Google Scholar 

  44. Chen A, Wang Z, Chen D (2009) Optical bistability and multistability via atomic coherence in the quasi-Λ-type atomic system. Sci China, Ser G 52:524–528

    Article  CAS  Google Scholar 

  45. Joshi A, Xiao M (2010) Atomic optical bistability in two- and three-level systems: perspectives and prospects. J Mod Opt 57:1196–1220

    Article  Google Scholar 

  46. Wu J, Lü X-Y, Zheng L-L (2010) Controllable optical bistability and multistability in a double two-level atomic system. J Phys B Atomic Mol Phys 43:161003

    Article  Google Scholar 

  47. Sahrai M, Asadpour SH, Mahrami H, Sadighi-Bonabi R (2011) Controlling the optical bistability via quantum interference in a four-level N-type atomic system. J Lumin 131:1682–1686

    Article  CAS  Google Scholar 

  48. Hossein Asadpour S, Eslami-Majd A (2012) Controlling the optical bistability and transmission coefficient in a four-level atomic medium. J Lumin 132:1477–1482

    Article  Google Scholar 

  49. Zhang D, Li J, Ding C, Yang X (2012) Control of optical bistability via an elliptically polarized light in a four-level tripod atomic system. Phys Scr 85:035401

    Article  Google Scholar 

  50. Xiao Z-H, Kim K (2010) Optical bistability using quantum coherence in a microwave-driven four-level atomic system. Opt Commun 283:2178–2181

    Article  CAS  Google Scholar 

  51. Osman KI, Joshi A (2013) Induced coherence and optical bistability in a four-level system with incoherent pumping. Opt Commun 293:86–94

    Article  CAS  Google Scholar 

  52. Joshi A, Xiao M (2004) Optical bistability in a three-level semiconductor quantum-well system. Appl Phys B Lasers Opt 79:65–69

    Article  CAS  Google Scholar 

  53. Li JH, Yang XX (2006) Optical bistability via tunable Fano-type interference in asymmetric semiconductor quantum wells. Eur Phys J B 53:449–454

    Article  CAS  Google Scholar 

  54. Li J-H (2007) Coherent control of optical bistability in tunnel-coupled double quantum wells. Opt Commun 274:366–371

    Article  CAS  Google Scholar 

  55. Li J-H (2007) Controllable optical bistability in a four-subband semiconductor quantum well system. Phys Rev B 75(15):155329

    Article  Google Scholar 

  56. Antón MA, Carreño F, Calderón OG, Melle S (2008) Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir. Opt Commun 281:3301–3313

    Article  Google Scholar 

  57. Li J, Hao X, Liu J, Yang X (2008) Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference. Phys Lett A 372:716–720

    Article  CAS  Google Scholar 

  58. Wang Z, Fan H (2010) Phase-dependent optical bistability and multistability in a semiconductor quantum well system. J Lumin 130:2084–2088

    Article  CAS  Google Scholar 

  59. Hossein Asadpour S, Rahimpour Soleimani H (2014) Optical bistability and multistability via biexciton coherence in semiconductor quantum well nanostructure. Opt Commun 315:347–351

    Article  CAS  Google Scholar 

  60. Hossein Asadpour S, Rahimpour Soleimani H (2014) Phase control of optical bistability based biexciton coherence in a quantum dot nanostructure. Phys B Condens Matter 440:124–129

    Article  CAS  Google Scholar 

  61. Wang Z, Yu B (2015) Optical bistability in triple quantum dot molecules in weak tunneling regime. Superlattice Microst 84:45–53

    Article  CAS  Google Scholar 

  62. Wang Z, Zhen S, Yu B (2015) Controlling optical bistability of acceptor and donor quantum dots embedded in a nonlinear photonic crystal. Laser Phys Lett 12:046004

    Article  Google Scholar 

  63. Singh MR (2009) Photon transparency in metallic photonic crystals doped with an ensemble of nanoparticles. Phys Rev A 79(1):013826

    Article  Google Scholar 

  64. Singh MR, Lipson RH (2008) Optical switching in nonlinear photonic crystals lightly doped with nanostructures. Phys B Atomic Mol Phys 41:015401

  65. Wang Z, Yu B (2014) Optical bistability and multistability in polaritonic materials doped with nanoparticles. Laser Phys Lett 11:115903

    Article  Google Scholar 

  66. Rupasov VI, Singh M (1996) Quantum Gap Solitons and Many-Polariton–Atom Bound States in Dispersive Medium and Photonic Band Gap. Phys Rev Lett 77:338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Hossein Asadpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solookinejad, G., Panahi, M., Ahmadi Sangachin, E. et al. Observation of Optical Bistability in a Polaritonic Material Doped with Nanoparticles. Plasmonics 12, 1881–1887 (2017). https://doi.org/10.1007/s11468-016-0458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0458-0

Keywords

Navigation