Skip to main content
Log in

Mixed convection flow of a Burgers nanofluid in the presence of stratifications and heat generation/absorption

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Here formulation and computations are made to explore the characteristics of the boundary layer flow of a Burgers fluid in the presence of nanoparticles. Effects of thermal and concentration stratifications and heat generation/absorption are considered in the energy and concentration expressions. Meaningful transformations are employed to reduce the nonlinear partial differential equations into ordinary differential equations. Convergent solutions for arising nonlinear problems are obtained. Impacts of emerging physical parameters on velocity, temperature and concentration profiles are elaborated. Numerical values of local Nusselt and Sherwood numbers are tabulated and interpreted for different values of physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi et al., Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  2. H. Masuda et al., Netsu Bussei 7, 227 (1993)

    Article  MathSciNet  Google Scholar 

  3. S.U.S. Choi, J.A. Eastman, in ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD (ASME, 1995) pp. 99--105

  4. M. Turkyilmazoglu, Chem. Eng. Sci. 84, 182 (2012)

    Article  Google Scholar 

  5. M. Sheikholeslami et al., J. Magn. & Magn. Mater. 369, 69 (2014)

    Article  ADS  Google Scholar 

  6. C. Zhang et al., Appl. Math. Comput. 39, 165 (2015)

    Google Scholar 

  7. T. Hayat et al., J. Aerospace Eng. 29, 04015011 (2015)

    Article  Google Scholar 

  8. B.J. Gireesha et al., J. Nanofluids 4, 474 (2015)

    Article  Google Scholar 

  9. U. Farooq et al., Comput. Fluids 11, 69 (2015)

    Article  MathSciNet  Google Scholar 

  10. S.A. Shehzad et al., J. Magn. & Magn. Mater. 397, 108 (2016)

    Article  ADS  Google Scholar 

  11. M. Jamil, C. Fetecau, J. Non-Newtonian Fluid Mech. 165, 1700 (2010)

    Article  Google Scholar 

  12. Y. Liu et al., Comput. Math. Appl. 62, 3123 (2011)

    Article  MathSciNet  Google Scholar 

  13. C. Li et al., Commun. Nonlinear Sci. Numer. Simulat. 17, 5026 (2012)

    Article  ADS  Google Scholar 

  14. T. Hayat et al., Prog. Comput. Fluid Dyn. 13, 48 (2013)

    Article  MathSciNet  Google Scholar 

  15. M. Khan, W.A. Khan, J. Braz. Soc. Mech. Sci. Eng. (2015) DOI:10.1007/s40430-014-0290-4

  16. M. Khan, W.A. Khan, AIP Adv. 5, 107138 (2015)

    Article  ADS  Google Scholar 

  17. A. Moradi et al., Int. J. Therm. Sci. 64, 129 (2013)

    Article  Google Scholar 

  18. T. Hayat et al., J. Mech. 29, 403 (2013)

    Article  Google Scholar 

  19. A.M. Rashad et al., J. Taiwan Inst. Chem. Eng. 45, 2163 (2014)

    Article  Google Scholar 

  20. M.M. Rashidi et al., Adv. Mech. Eng. 2014, 735939 (2014)

    Google Scholar 

  21. T. Hayat et al., Sci. Iran. B 21, 682 (2014)

    Google Scholar 

  22. S. Mukhopadhyay, Alex. Eng. J. 52, 259 (2103)

    Article  Google Scholar 

  23. D. Srinivasacharya, M. Upendar, J. Egypt. Math. Soc. 21, 370 (2013)

    Article  MathSciNet  Google Scholar 

  24. W. Ibrahim, O.D. Makinde, Comput. Fluids 86, 433 (2013)

    Article  MathSciNet  Google Scholar 

  25. T. Hayat et al., Plos One 9, e107858 (2014)

    Article  ADS  Google Scholar 

  26. T. Hayat, Therm. Sci. (2015) DOI:10.2298/TSCI141106052H

  27. S.J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method (CRC Press, Boca Raton, 2003)

  28. L. Zheng et al., J. Franklin Inst. 350, 990 (2013)

    Article  MathSciNet  Google Scholar 

  29. M. Sheikholeslami et al., J. Mol. Liq. 194, 30 (2014)

    Article  Google Scholar 

  30. S. Han et al., Appl. Math. Lett. 38, 87 (2014)

    Article  MathSciNet  Google Scholar 

  31. S. Abbasbandy et al., Int. J. Numer. Methods Heat Fluid Flow 24, 390 (2014)

    Article  MathSciNet  Google Scholar 

  32. M. Sheikholeslami et al., J. Comput. Theor. Nanosci. 11, 486 (2014)

    Article  Google Scholar 

  33. T. Hayat et al., J. Magn. & Magn. Mater. 389, 48 (2015)

    Article  ADS  Google Scholar 

  34. T. Hayat et al., J. Hydrol. Hydromech. 63, 311 (2015)

    Article  Google Scholar 

  35. S.A. Shehzad et al., Eur. Phys. J. Plus 131, 112 (2016)

    Article  Google Scholar 

  36. J. Harris, Rheology and Non-Newtonian Flow (Longman, London, 1977)

  37. H. Schichting, Boundary Layer Theory, 6th edition (McGraw-Hill, New York, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Waqas, M., Shehzad, S.A. et al. Mixed convection flow of a Burgers nanofluid in the presence of stratifications and heat generation/absorption. Eur. Phys. J. Plus 131, 253 (2016). https://doi.org/10.1140/epjp/i2016-16253-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16253-9

Navigation