Skip to main content
Log in

Partially relativistic self-gravitating Bose-Einstein condensates with a stiff equation of state

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Because of their superfluid properties, some compact astrophysical objects such as neutron stars may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). We consider a partially relativistic model of self-gravitating BECs where the relation between the pressure and the rest-mass density is assumed to be quadratic (as in the case of classical BECs) but pressure effects are taken into account in the relation between the energy density and the rest-mass density. At high densities, we get a stiff equation of state in which the speed of sound equals the speed of light. We determine the maximum mass of general relativistic BEC stars described by this equation of state using the formalism of Tooper (1965). This maximum mass is slightly larger than the maximum mass obtained by Chavanis and Harko (2012) using a fully relativistic model. We also consider the possibility that dark matter is made of BECs and apply the partially relativistic model of BECs to cosmology. In this model, we show that the universe experiences a stiff matter era, followed by a dust matter era, and finally by a dark energy era due to the cosmological constant. Interestingly, the Friedmann equations can be solved analytically in that case and provide a simple generalization of the ΛCDM model including a stiff matter era. We point out, however, the limitations of the partially relativistic model for BECs and show the need for a fully relativistic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Pethick, H. Smith, Bose-Einstein condensation in dilute gases (Cambridge, Cambridge University Press, 2008).

  2. J.F. Navarro, C.S. Frenk, S.D.M. White, Mon. Not. R. Astron. Soc. 462, 563 (1996).

    ADS  Google Scholar 

  3. A. Burkert, Astrophys. J. 447, L25 (1995).

    Article  ADS  Google Scholar 

  4. P. Salucci, A. Burkert, Astrophys. J. 537, L9 (2000).

    Article  ADS  Google Scholar 

  5. G. Kauffmann, S.D.M. White, B. Guiderdoni, Mon. Not. R. Astron. Soc. 264, 201 (1993).

    Article  ADS  Google Scholar 

  6. E.P. Gross, Ann. Phys. 4, 57 (1958).

    Article  ADS  MATH  Google Scholar 

  7. E.P. Gross, Nuovo Cimento 20, 454 (1961).

    Article  MATH  Google Scholar 

  8. E.P. Gross, J. Math. Phys. 4, 195 (1963).

    Article  ADS  Google Scholar 

  9. L.P. Pitaevskii, Sov. Phys. JETP 9, 830 (1959).

    MathSciNet  Google Scholar 

  10. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).

    MathSciNet  Google Scholar 

  11. E. Madelung, Z. Phys. 40, 322 (1927).

    Article  ADS  Google Scholar 

  12. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Suárez, V.H. Robles, T. Matos, Astrophys. Space Sci. Proc. 38, 107 (2014).

    Article  ADS  Google Scholar 

  14. T. Rindler-Daller, P.R. Shapiro, Astrophys. Space Sci. Proc. 38, 163 (2014).

    Article  ADS  Google Scholar 

  15. P.H. Chavanis, Self-gravitating Bose-Einstein condensates, in Quantum Aspects of Black Holes, edited by X. Calmet (Springer, 2015).

  16. M.R. Baldeschi, G.B. Gelmini, R. Ruffini, Phys. Lett. B 122, 221 (1983).

    Article  ADS  Google Scholar 

  17. M.Yu. Khlopov, B.A. Malomed, Ya.B. Zel’dovich, Mon. Not. R. Astron. Soc. 215, 575 (1985).

    Article  ADS  Google Scholar 

  18. M. Membrado, A.F. Pacheco, J. Sanudo, Phys. Rev. A 39, 4207 (1989).

    Article  ADS  Google Scholar 

  19. S.J. Sin, Phys. Rev. D 50, 3650 (1994).

    Article  ADS  Google Scholar 

  20. F.E. Schunck, astro-ph/9802258.

  21. T. Matos, F.S. Guzmán, Astron. Nachr. 320, 97 (1999).

    Article  ADS  MATH  Google Scholar 

  22. F.S. Guzmán, T. Matos, Class. Quantum Grav. 17, L9 (2000).

    Article  ADS  MATH  Google Scholar 

  23. W. Hu, R. Barkana, A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000).

    Article  ADS  Google Scholar 

  24. T. Matos, L.A. Ureña-López, Phys. Rev. D 63, 063506 (2001).

    Article  ADS  Google Scholar 

  25. A. Arbey, J. Lesgourgues, P. Salati, Phys. Rev. D 64, 123528 (2001).

    Article  ADS  Google Scholar 

  26. M.P. Silverman, R.L. Mallett, Class. Quantum Grav. 18, L103 (2001).

    Article  ADS  MATH  Google Scholar 

  27. M. Alcubierre, F.S. Guzmán, T. Matos, D. Núñez, L.A. Ureña-López, P. Wiederhold, Class. Quantum Grav. 19, 5017 (2002).

    Article  ADS  MATH  Google Scholar 

  28. M.P. Silverman, R.L. Mallett, Gen. Relativ. Gravit. 34, 633 (2002).

    Article  MATH  Google Scholar 

  29. A. Bernal, T. Matos, D. Núñez, Rev. Mex. Astron. Astrofis. 44, 149 (2008).

    ADS  Google Scholar 

  30. P. Sikivie, Q. Yang, Phys. Rev. Lett. 103, 111301 (2009).

    Article  ADS  Google Scholar 

  31. T. Matos, A. Vazquez-Gonzalez, J. Magana, Mon. Not. R. Astron. Soc. 393, 1359 (2009).

    Article  ADS  Google Scholar 

  32. J.W. Lee, Phys. Lett. B 681, 118 (2009).

    Article  ADS  Google Scholar 

  33. T.P. Woo, T. Chiueh, Astrophys. J. 697, 850 (2009).

    Article  ADS  Google Scholar 

  34. J.W. Lee, S. Lim, J. Cosmol. Astropart. Phys. 01, 007 (2010).

    Article  ADS  Google Scholar 

  35. P.H. Chavanis, Phys. Rev. D 84, 043531 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  36. P.H. Chavanis, L. Delfini, Phys. Rev. D 84, 043532 (2011).

    Article  ADS  Google Scholar 

  37. G. Manfredi, P.A. Hervieux, F. Haas, Class. Quantum Grav. 30, 075006 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  38. H.Y. Schive, T. Chiueh, T. Broadhurst, Nat. Phys. 10, 496 (2014).

    Article  Google Scholar 

  39. H.Y. Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

    Article  ADS  Google Scholar 

  40. R. Ruffini, S. Bonazzola, Phys. Rev. 187, 1767 (1969).

    Article  ADS  Google Scholar 

  41. P.H. Chavanis, M. Lemou, F. Méhats, arXiv:1409.7840.

  42. J.W. Lee, I. Koh, Phys. Rev. D 53, 2236 (1996).

    Article  ADS  Google Scholar 

  43. P.J.E. Peebles, Astrophys. J. 534, L127 (2000).

    Article  ADS  Google Scholar 

  44. J. Goodman, New Astron. 5, 103 (2000).

    Article  ADS  Google Scholar 

  45. J. Lesgourgues, A. Arbey, P. Salati, New Astron. Rev. 46, 791 (2002).

    Article  ADS  Google Scholar 

  46. A. Arbey, J. Lesgourgues, P. Salati, Phys. Rev. D 68, 023511 (2003).

    Article  ADS  Google Scholar 

  47. C.G. Böhmer, T. Harko, J. Cosmol. Astropart. Phys. 06, 025 (2007).

    Article  Google Scholar 

  48. F. Briscese, Phys. Lett. B 696, 315 (2011).

    Article  ADS  Google Scholar 

  49. T. Harko, J. Cosmol. Astropart. Phys. 05, 022 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  50. M.O.C. Pires, J.C.C. de Souza, J. Cosmol. Astropart. Phys. 11, 024 (2012).

    Article  ADS  Google Scholar 

  51. V.H. Robles, T. Matos, Mon. Not. R. Astron. Soc. 422, 282 (2012).

    Article  ADS  Google Scholar 

  52. T. Rindler-Daller, P.R. Shapiro, Mon. Not. R. Astron. Soc. 422, 135 (2012).

    Article  ADS  Google Scholar 

  53. V. Lora, J. Magaña, A. Bernal, F.J. Sánchez-Salcedo, E.K. Grebel, J. Cosmol. Astropart. Phys. 02, 011 (2012).

    Article  ADS  Google Scholar 

  54. A.X. González-Morales, A. Diez-Tejedor, L.A. Ureña-López, O. Valenzuela, Phys. Rev. D 87, 021301 (2013).

    Article  ADS  Google Scholar 

  55. F.S. Guzmán, F.D. Lora-Clavijo, J.J. González-Avilés, F.J. Rivera-Paleo, J. Cosmol. Astropart. Phys. 09, 034 (2013).

    Article  ADS  Google Scholar 

  56. D. Bettoni, M. Colombo, S. Liberati, J. Cosmol. Astropart. Phys. 02, 004 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  57. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  58. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez, M. Bradac, Astrophys. J. 679, 1173 (2008).

    Article  ADS  Google Scholar 

  59. T. Fukuyama, M. Morikawa, T. Tatekawa, J. Cosmol. Astropart. Phys. 06, 033 (2008).

    Article  ADS  Google Scholar 

  60. P.H. Chavanis, Mass-radius relation of self-gravitating Bose-Einstein condensates, preprint.

  61. E. Seidel, W.M. Suen, Phys. Rev. Lett. 72, 2516 (1994).

    Article  ADS  Google Scholar 

  62. G. Ingrosso, R. Ruffini, Nuovo Cimento 101, 369 (1988).

    Article  Google Scholar 

  63. G. Ingrosso, M. Merafina, R. Ruffini, Nuovo Cimento 105, 977 (1990).

    Article  Google Scholar 

  64. N. Bilic, H. Nikolic, Nucl. Phys. B 590, 575 (2000).

    Article  ADS  Google Scholar 

  65. T. Matos, A. Suárez, EPL 96, 56005 (2011).

    Article  ADS  Google Scholar 

  66. T. Harko, E. Madarassy, J. Cosmol. Astropart. Phys. 01, 020 (2012).

    Article  ADS  Google Scholar 

  67. Z. Slepian, J. Goodman, Mon. Not. R. Astron. Soc. 427, 839 (2012).

    Article  ADS  Google Scholar 

  68. T. Harko, G. Mocanu, Phys. Rev. D 85, 084012 (2012).

    Article  ADS  Google Scholar 

  69. V.H. Robles, T. Matos, Astrophys. J. 763, 19 (2013).

    Article  ADS  Google Scholar 

  70. P.H. Chavanis, Astron. Astrophys. 537, A127 (2012).

    Article  ADS  Google Scholar 

  71. D.J. Kaup, Phys. Rev. 172, 1331 (1968).

    Article  ADS  Google Scholar 

  72. W. Thirring, Phys. Lett. B 127, 27 (1983).

    Article  ADS  Google Scholar 

  73. J.D. Breit, S. Gupta, A. Zaks, Phys. Lett. B 140, 329 (1984).

    Article  ADS  Google Scholar 

  74. E. Takasugi, M. Yoshimura, Z. Phys. C 26, 241 (1984).

    ADS  Google Scholar 

  75. M. Colpi, S.L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  76. J.J. van der Bij, M. Gleiser, Phys. Lett. B 194, 482 (1987).

    Article  ADS  Google Scholar 

  77. M. Gleiser, Phys. Rev. D 38, 2376 (1988).

    Article  ADS  Google Scholar 

  78. M. Gleiser, R. Watkins, Nucl. Phys. B 319, 733 (1989).

    Article  ADS  Google Scholar 

  79. E. Seidel, W.M. Suen, Phys. Rev. D 42, 384 (1990).

    Article  ADS  Google Scholar 

  80. F.V. Kusmartsev, E.W. Mielke, F.E. Schunck, Phys. Lett. A 157, 465 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  81. F.V. Kusmartsev, E.W. Mielke, F.E. Schunck, Phys. Rev. D 43, 3895 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  82. T.D. Lee, Y. Pang, Phys. Rep. 221, 251 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  83. P. Jetzer, Phys. Rep. 220, 163 (1992).

    Article  ADS  Google Scholar 

  84. J. Balakrishna, E. Seidel, W.M. Suen, Phys. Rev. D 58, 104004 (1998).

    Article  ADS  Google Scholar 

  85. F.E. Schunck, A.R. Liddle, Black Holes: Theory and Observation, in Proceedings of the 179th W. E. Heraeus Seminar, edited by Friedrich W. Hehl, Claus Kiefer, Ralph J.K. Metzler (Springer, 1998) p. 285.

  86. E.W. Mielke, F.E. Schunck, Nucl. Phys. B 564, 185 (2000).

    Article  ADS  Google Scholar 

  87. D.F. Torres, S. Capozziello, G. Lambiase, Phys. Rev. D 62, 104012 (2000).

    Article  ADS  Google Scholar 

  88. X.Z. Wang, Phys. Rev. D 64, 124009 (2001).

    Article  ADS  Google Scholar 

  89. F.E. Schunck, E.W. Mielke, Class. Quantum Grav. 20, R301 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. F.S. Guzmán, Phys. Rev. D 73, 021501 (2006).

    Article  ADS  Google Scholar 

  91. P.H. Chavanis, T. Harko, Phys. Rev. D 86, 064011 (2012).

    Article  ADS  Google Scholar 

  92. C. Herdeiro, E. Radu, Phys. Rev. Lett. 112, 221101 (2014).

    Article  ADS  Google Scholar 

  93. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  MATH  Google Scholar 

  94. J.M. Lattimer, M. Prakash, in From Nuclei to Stars, edited by S. Lee (World Scientific, Singapore, 2011) arXiv:1012.3208.

  95. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010).

    Article  ADS  Google Scholar 

  96. O. Barziv, L. Karper, M.H. van Kerkwijk, J.H. Telging, J. van Paradijs, Astron. Astrophys. 377, 925 (2001).

    Article  ADS  Google Scholar 

  97. H. Quaintrell, A.J. Norton, T.D.C. Ash, P. Roche, B. Willems, T.R. Bedding, I.K. Baldry, R.P. Fender, Astron. Astrophys. 401, 303 (2003).

    Article  ADS  Google Scholar 

  98. M.H. van Kerkwijk, R. Breton, S.R. Kulkarni, Astrophys. J. 728, 95 (2011).

    Article  ADS  Google Scholar 

  99. J. Antoniadis et al., Science 340, 6131 (2013).

    Article  ADS  Google Scholar 

  100. G. Dvali, C. Gomez, Fortschr. Phys. 61, 742 (2013).

    Article  MathSciNet  Google Scholar 

  101. R. Casadio, A. Orlandi, J. High Energy Phys. 8, 25 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  102. S. Das, R.K. Bhaduri, Class. Quantum Grav. 32, 105003 (2015).

    Article  ADS  Google Scholar 

  103. R.F. Tooper, Astrophys. J. 140, 434 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  104. R.F. Tooper, Astrophys. J. 142, 1541 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  105. Ya.B. Zel’dovich, Soviet Phys. JETP 14, 1143 (1962).

    MATH  Google Scholar 

  106. T. Harko, Mon. Not. R. Astron. Soc. 413, 3095 (2011).

    Article  ADS  Google Scholar 

  107. Ya.B. Zel’dovich, Mon. Not. R. Astron. Soc. 160, 1 (1972).

    Article  Google Scholar 

  108. B. Li, T. Rindler-Daller, P.R. Shapiro, Phys. Rev. D 89, 083536 (2014).

    Article  ADS  Google Scholar 

  109. A. Suárez, P.H. Chavanis, Phys. Rev. D 92, 023510 (2015).

    Article  ADS  Google Scholar 

  110. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, 1958).

  111. N.K. Glendenning, Compact Stars, Nuclear Physics, Particle Physics and General Relativity (Springer, New York, 2000).

  112. P.H. Chavanis, Astron. Astrophys. 381, 709 (2002).

    Article  ADS  Google Scholar 

  113. P.H. Chavanis, Astron. Astrophys. 483, 673 (2008).

    Article  ADS  MATH  Google Scholar 

  114. C.W. Misner, H.S. Zapolsky, Phys. Rev. Lett. 12, 635 (1964).

    Article  ADS  Google Scholar 

  115. D.W. Meltzer, K.S. Thorne, Astrophys. J. 145, 514 (1966).

    Article  ADS  Google Scholar 

  116. P.H. Chavanis, Astron. Astrophys. 381, 340 (2002).

    Article  ADS  MATH  Google Scholar 

  117. H. Poincaré, Acta Math. 7, 259 (1885).

    Article  MathSciNet  Google Scholar 

  118. J. Katz, Mon. Not. R. Astron. Soc. 183, 765 (1978).

    Article  ADS  MATH  Google Scholar 

  119. P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006).

    Article  ADS  MATH  Google Scholar 

  120. S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs and neutron stars (Wiley, New York, 1983).

  121. P.H. Chavanis, Astron. Astrophys. 451, 109 (2006).

    Article  ADS  MATH  Google Scholar 

  122. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  123. A. Mukherjee, S. Shah, S. Bose, Phys. Rev. D 91, 084051 (2015).

    Article  ADS  Google Scholar 

  124. F. Ozel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010).

    Article  ADS  Google Scholar 

  125. F. Ozel, A. Gould, T. Guver, Astrophys. J. 748, 5 (2012).

    Article  ADS  Google Scholar 

  126. T. Guver, P. Wroblewski, L. Camarota, F. Ozel, Astrophys. J. 719, 1807 (2010).

    Article  ADS  Google Scholar 

  127. S. van Straaten, E.C. Ford, M. van der Klis, M. Mendez, P. Kaaret, astro-ph/0001480.

  128. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars: Equation of State and Structure (Springer, 2007).

  129. N. Chamel, P. Haensel, J.L. Zdunik, A.F. Fantina, Int. J. Mod. Phys. E 22, 1330018 (2013).

    Article  ADS  Google Scholar 

  130. C.E. Rhoades, R. Ruffini, Phys. Rev. Lett. 32, 324 (1974).

    Article  ADS  Google Scholar 

  131. P.H. Chavanis, Eur. Phys. J. Plus 129, 38 (2014).

    Article  Google Scholar 

  132. P.H. Chavanis, Eur. Phys. J. Plus 129, 222 (2014).

    Article  Google Scholar 

  133. P.H. Chavanis, arXiv:1208.1185.

  134. P.H. Chavanis, arXiv:1309.5784.

  135. J.D. Barrow, Nature 272, 211 (1978).

    Article  ADS  Google Scholar 

  136. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, NJ, 1987).

  137. S. Weinberg, Gravitation and Cosmology (John Wiley, 2002).

  138. P.H. Chavanis, arXiv:1412.0743.

  139. D. Pugliese, H. Quevedo, J.A. Rueda, R. Ruffini, Phys. Rev. D 88, 024053 (2013).

    Article  ADS  Google Scholar 

  140. C. Gruber, A. Pelster, Eur. Phys. J. D 68, 341 (2014).

    Article  ADS  Google Scholar 

  141. T. Harko, M.J. Lake, Phys. Rev. D 91, 045012 (2015).

    Article  ADS  Google Scholar 

  142. B. Danila, T. Harko, Z. Kovacs, arXiv:1504.06014.

  143. D. Page, M. Prakash, J.M. Lattimer, A.W. Steiner, Phys. Rev. Lett. 106, 081101 (2011).

    Article  ADS  Google Scholar 

  144. D. Page, M. Prakash, J.M. Lattimer, A.W. Steiner, Phys. Rev. Lett. 106, 081101 (2011).

    Article  ADS  Google Scholar 

  145. S. Banik, D. Bandyopadhyay, Phys. Rev. D 67, 123003 (2003).

    Article  ADS  Google Scholar 

  146. S. Banik, M. Hanauske, D. Bandyopadhyay, W. Greiner, Phys. Rev. D 70, 123004 (2004).

    Article  ADS  Google Scholar 

  147. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972).

    Article  ADS  Google Scholar 

  148. S. Barshay, G. Vagradov, G.E. Brown, Phys. Lett. B 43, 359 (1973).

    Article  ADS  Google Scholar 

  149. G. Baym, Phys. Rev. Lett. 30, 1340 (1973).

    Article  ADS  Google Scholar 

  150. N.K. Glendenning, B. Banerjee, M. Gyulassy, Ann. Phys. 149, 1 (1983).

    Article  ADS  Google Scholar 

  151. N.K. Glendenning, P. Hecking, V. Ruck, Ann. Phys. 149, 1 (1983).

    Article  ADS  Google Scholar 

  152. T. Sakai, K. Yazaki, K. Shimizu, Nucl. Phys. A 594, 247 (1995).

    Article  ADS  Google Scholar 

  153. T. Sakai, K. Shimizu, K. Yazaki, Prog. Theor. Phys. Suppl. 137, 121 (2000).

    Article  ADS  Google Scholar 

  154. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012).

    Article  ADS  Google Scholar 

  155. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85, 065802 (2012).

    Article  ADS  Google Scholar 

  156. J.I. Kapusta, Phys. Rev. Lett. 93, 251801 (2004).

    Article  ADS  Google Scholar 

  157. H. Abuki, Nucl. Phys. A 791, 117 (2007).

    Article  ADS  Google Scholar 

  158. D.M. Brink, R.A. Broglia, Nuclear Superfluidity: pairing in finite systems (Cambridge University Press, 2010).

  159. C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993).

    Article  ADS  Google Scholar 

  160. J.R. Engelbrecht, M. Randeria, C.A.R. Sá de Melo, Phys. Rev. B 55, 15153 (1997).

    Article  ADS  Google Scholar 

  161. L. Salasnich, J. Phys.: Conf. Ser. 497, 0122026 (2014).

    ADS  Google Scholar 

  162. Y. Nishida, H. Abuki, Phys. Rev. D 72, 096004 (2005).

    Article  ADS  Google Scholar 

  163. H. Bondi, Proc. R. Soc. (London) A 282, 303 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  164. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitation Theory and Gravitational Collapse (Chicago, University of Chicago Press, 1965).

  165. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  MATH  Google Scholar 

  166. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 74, 81 (1931).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavanis, PH. Partially relativistic self-gravitating Bose-Einstein condensates with a stiff equation of state. Eur. Phys. J. Plus 130, 181 (2015). https://doi.org/10.1140/epjp/i2015-15181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15181-6

Keywords

Navigation