Skip to main content
Log in

Coupled inductors-based chaotic Colpitts oscillators: Mathematical modeling and synchronization issues

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper deals with the mathematical modelling and synchronization of a new controlled Colpitts oscillator. The new electronic oscillator is constructed by considering standard/classical Colpitts oscillator with two further elements (coupled inductors and variable resistor). An accurate mathematical model is provided. The dynamics of the new controlled Colpitts oscillator is investigated theoretically and experimentally by examining dissipativity, equilibrium point, stability, bifurcation and Lyapunov exponent. It is found that the oscillator moves from the limit cycle motion to chaos via the usual paths of period-doubling, intermittency and interior crisis routes as the control resistor R L is monitored. The electronic circuit of the oscillator is implemented, and a very good qualitative agreement is obtained between the theoretical and experimental results. Furthermore, the problem of synchronization is investigated, in order to promote chaos-based synchronization designs of this type of oscillators. Firstly, we design a coupling function for unidirectional coupling in identical and mismatched controlled Colpitts oscillators to realize a modified function projective synchronization through the open-plus-closed-loop (OPCL) method. Secondly, two different coupling configurations, namely, coupled collector nodes (C-C) and coupled emitter nodes (E-E) of controlled Colpitts oscillators, are studied. Numerical simulations and experimental results are performed to show the effectiveness and robustness of the proposed control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tamasevicius, G. Mykolaiti, S. Bumeliene, A. Cenys, A.N. Anagnostopoulos, E. Lindberg, Electron. Lett. 37, 549 (2001).

    Article  Google Scholar 

  2. M.P. Kennedy, IEEE Trans. Circ. Syst. I 41, 771 (1994).

    Article  Google Scholar 

  3. C. Wegener, M.P. Kennedy, in Proceedings of an international workshop on nonlinear dynamics of electronic systems, Dublin (1995) P. 255.

  4. G. Mykolaitis, A. Tamasevicius, S. Bumeliene, Elektron. Electrotech. 53, 13 (2004).

    Google Scholar 

  5. R.M. Nguimdo, R. Tchitnga, P. Woafo, Chaos 23, 043122 (2013).

    Article  ADS  Google Scholar 

  6. L. Fortuna, M. Frasca, A. Rizzo, IEEE Trans. Instrum. Meas. 52, 809 (2003).

    Article  Google Scholar 

  7. T. Jiang, S. Qiao, Z. Shi, L. Peng, J. Huangfu, W.Z. Cui, W. Ma, L. Ran, Prog. Electromagn. Res. 90, 15 (2009).

    Article  Google Scholar 

  8. R.L. Filali, M. Benrejeb, P. Borne, Commun. Nonlinear Sci. Numer. Simulat. 19, 1424 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Ababei, R. Marculescu, in Proc. IEEE APCCAS Tianjin, China (2000) pp. 30-33.

  10. A. Buscarino, L. Fortuna, M. Frasca, G. Sciuto, Int. J. Bifurc. Chaos 21, 569 (2001).

    Article  Google Scholar 

  11. A. Cenys, A. Tamasevicius, A. Baziliauskas, R. Krivickas, E. Lindberg, Chaos Solitons Fractals 17, 349 (2003).

    Article  ADS  MATH  Google Scholar 

  12. L. Guo-Hui, Chaos Solitons Fractals 26, 87 (2005).

    Article  ADS  MATH  Google Scholar 

  13. J.Y. Effa, B.Z Essimbi, J. Mucho Ngundam, Nonlinear Dyn. 58, 39 (2009).

    Article  MATH  Google Scholar 

  14. S. Bumeliene, A. Tamasevicius, G. Mykolaitis, A. Baziliauskas, E. Lindberg, Nonlinear Dyn. 44, 167 (2006).

    Article  MATH  Google Scholar 

  15. J. Kengne, J.C. Chedjou, V.A. Fono, K. Kyamakya, Nonlinear Dyn. 67, 1247 (2012).

    Article  Google Scholar 

  16. J. Kengne, J.C. Chedjou, G. Kenne, K. Kyamakya, Commun. Nonlinear Sci. Numer. Simulat. 17, 2914 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  17. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S. Li, W. Xu, R. Li, Phys. Lett. A. 361, 98 (2007).

    Article  ADS  MATH  Google Scholar 

  19. H.B. Fotsin, J. Daafouz, Phys. Lett. A 339, 304 (2005).

    Article  ADS  MATH  Google Scholar 

  20. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).

    Article  ADS  Google Scholar 

  21. H.N. Agiza, Nonlinear Anal. 58, 11 (1990).

    Article  MathSciNet  Google Scholar 

  22. S. Boccaletti, D.L. Valladares, Phys. Rev. E 62, 7497 (2000).

    Article  ADS  Google Scholar 

  23. Y. Chen, X.X. Chen, S.S. Gu, Nonlinear Anal. 66, 1929 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. Y.W. Wang, Z.H. Guan, Chaos Solitons Fractals 27, 97 (2006).

    Article  ADS  MATH  Google Scholar 

  25. D.L. Chen, J.T. Sun, C.S. Huang, Chaos Solitons Fractals 28, 213 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. G.L. Cai, S. Zheng, L.X. Tian, Chin. Phys. B 17, 2012 (2008).

    Google Scholar 

  27. Z.L. Wang, Commun. Nonlinear Sci. Numer. Simulat. 14, 2366 (2009).

    Article  ADS  Google Scholar 

  28. M. Mossa Al-Sawal ha, M.S.M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 15, 1036 (2010).

    Article  ADS  Google Scholar 

  29. D. Hongyue, Z. Qingshuang, W. Changhong, L. Mingxiang, Nonlinear Anal. Real World Appl. 11, 705 (2010).

    Article  MathSciNet  Google Scholar 

  30. L.P. Zhang, H.B. Jiang, Q.S. Bi, Nonlinear Dyn. 59, (2010).

  31. R. Mainieri, J. Rehacek, Phys. Rev. Lett. 82, 3042 (1999).

    Article  ADS  Google Scholar 

  32. G.H. Li, Chaos Solitons Fractals 32, 1786 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Y. Yongguang, L. Han-Xiong, Nonlinear Anal. Real World Appl. 11, 2456 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  34. K.S. Sudheer, M. Sabir, Commun. Nonlinear Sci. Numer. Simulat. 15, 4058 (2010).

    Article  ADS  Google Scholar 

  35. G. Fu, Commun. Nonlinear Sci. Numer. Simulat. 17, 2602 (2012).

    Article  ADS  Google Scholar 

  36. V. Kamdoum Tamba, H.B. Fotsin, J. Kengne, P.K. Talla, T. Fozin Fonzin, Far East J. Dyn. Syst. 21, 93 (2013).

    MathSciNet  MATH  Google Scholar 

  37. S. Zhiyong, S. Gangauan, M. Fuhong, Z. Yanbin, Nonlinear Dyn. 68, 471 (2012).

    Article  MATH  Google Scholar 

  38. Y. Fei, W. Chunhua, W. Qiuzhen, H. Yan, Pramana J. Phys. 80, 223 (2013).

    Article  Google Scholar 

  39. K.S. Sudheer, M. Sabir, Chaos 20, (2010).

  40. I. Grosu, E. Padmanaban, P.K. Roy, S.K. Dana, Phys. Rev. Lett. 100, 234102 (2008).

    Article  ADS  Google Scholar 

  41. G.M. Maggio, O. De Feo, M.P. Kennedy, IEEE Trans. Circuits Syst. 46, 1118 (1999).

    Article  MATH  Google Scholar 

  42. S. Wiggings, Introduction to applied nonlinear dynamics (Springer-Verlag, New York, 2003).

  43. S.H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Perseus Books Publishing, New York, 1994).

  44. W. Hahn, The Stability of Motion (Springer, New York, 1967).

  45. J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector Field (Springer, New York, 1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Fotsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamdoum Tamba, V., Fotsin, H.B., Kengne, J. et al. Coupled inductors-based chaotic Colpitts oscillators: Mathematical modeling and synchronization issues. Eur. Phys. J. Plus 130, 137 (2015). https://doi.org/10.1140/epjp/i2015-15137-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15137-x

Keywords

Navigation