Skip to main content
Log in

MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article is devoted to describing the boundary layer flow and heat transfer for an electrically conducting Casson fluid over a permeable stretching surface with second-order slip velocity model and thermal slip conditions in the presence of internal heat generation/absorption and thermal radiation. The basic equations governing the flow and heat transfer are in the form of partial differential equations; the same have been reduced to a set of highly non-linear ordinary differential equations by applying suitable similarity transformations. Exact solution corresponding to momentum equation is obtained, and, in the case of no slip conditions, we get the exact solutions for both momentum and energy equation. The resulting similarity equations are solved numerically by shooting method. Comparisons with previously published work are performed and the results are found to be in excellent agreement. In the present work the effect of magnetic parameter, suction/injection parameter, Casson parameter, slip parameters, radiation parameter, internal heat generation/absorption parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Also, the local skin-friction coefficient and the local Nusselt number at the sheet are computed and discussed. It is found that the temperature rises to a higher value when the Casson parameter increases but the reverse is true for the velocity distribution. Finally, increasing the velocity and thermal slip parameters makes the rate of heat transfer decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).

    Article  Google Scholar 

  2. C.K. Chen, M. Char, J. Math. Anal. Appl. 35, 568 (1988).

    Article  MathSciNet  Google Scholar 

  3. I. Pop, T. Na, Mech. Res. Commun. 23, 413 (1996).

    Article  MATH  Google Scholar 

  4. E. Magyari, B. Keller, J. Phys. D. Appl. Phys. 32, 2876 (1999).

    Article  ADS  Google Scholar 

  5. E.M.A. Elbashbeshy, M.A.A. Bazid, Heat Mass Transfer 41, 1 (2004).

    Article  ADS  Google Scholar 

  6. R. Tsai, K.H. Huang, J.S. Huang, Int. Commun. Heat Mass Transfer 35, 1340 (2008).

    Article  Google Scholar 

  7. S. Bhattacharyya, A. Pal, A.S. Gupta, Heat Mass Transfer 34, 41 (1998).

    Article  ADS  Google Scholar 

  8. S.K. Khan, Int. J. Heat Mass Transfer 49, 628 (2006).

    Article  MATH  Google Scholar 

  9. W.C. Tan, P.W. Xiao, X.M. Yu, Int. J. Non-Linear Mech. 38, 645 (2003).

    Article  MATH  Google Scholar 

  10. A.M. Megahed, Rheol. Acta 51, 841 (2012).

    Article  Google Scholar 

  11. A.M. Megahed, Chin. Phys. B 22, 094701 (2013).

    Article  Google Scholar 

  12. M.M. Khader, A.M. Megahed, J. Appl. Mech. Tech. Phys. 54, 440 (2013).

    Article  ADS  MATH  Google Scholar 

  13. N.T.M. Eldabe, M.G.E. Salwa, J. Phys. Soc. Jpn. 64, 41 (1995).

    Article  Google Scholar 

  14. S. Pramanik, Ain Shams Eng. J. 5, 205 (2014).

    Article  Google Scholar 

  15. S. Mukhopadhyay, De Prativa Ranjan, K. Bhattacharyya, G.C. Layek, Ain Shams Eng. J. 4, 933 (2013).

    Article  Google Scholar 

  16. P.D. Ariel, T. Hayat, S. Asghar, Acta Mech. 187, 29 (2006).

    Article  MATH  Google Scholar 

  17. T. Hayat, T. Javed, Z. Abbas, Int. J. Heat Mass Transfer 51, 4528 (2008).

    Article  MATH  Google Scholar 

  18. T. Fanga, A. Aziz, Z. Naturforsch. 65a, 1087 (2010).

    ADS  Google Scholar 

  19. A.M. Megahed, Eur. Phys. J. Plus 126, 1 (2011).

    Article  Google Scholar 

  20. M. Mustafa, T. Hayat, I. Pop, A. Hendi, Z. Naturforsch. 67a, 70 (2012).

    ADS  Google Scholar 

  21. A. Raptis, Int. J. Heat Mass Transfer 41, 2865 (1998).

    Article  MATH  Google Scholar 

  22. A. Raptis, Int. Commun. Heat Mass Transfer 26, 889 (1999).

    Article  Google Scholar 

  23. A.J. Chamkha, A.A. Khaled, Heat Mass Transfer 37, 117 (2001).

    Article  ADS  Google Scholar 

  24. T. Fang, S. Yao, J. Zhang, A. Aziz, Commun. Nonlinear Sci. Numer. Simulat. 15, 1831 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. T. Fang, A. Aziz, Z. Naturforsch. A Phys. Sci. 65a, 1087 (2010).

    ADS  Google Scholar 

  26. L. Wu, Appl. Phys. Lett. 93, 253103 (2008).

    Article  ADS  Google Scholar 

  27. C.Y. Wang, Nonlinear Anal. Real World Appl. 10, 375 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  28. H.I. Andersson, Acta Mech. 158, 121 (2002).

    Article  MATH  Google Scholar 

  29. C.Y. Wang, Chem. Eng. Sci. 57, 3745 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Megahed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megahed, A.M. MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation. Eur. Phys. J. Plus 130, 81 (2015). https://doi.org/10.1140/epjp/i2015-15081-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15081-9

Keywords

Navigation