Skip to main content
Log in

Mixed Convective Flow of a Casson Fluid over a Vertical Stretching Sheet

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A coupled nonlinear boundary value problem arising from a mixed convective flow of a non-Newtonian fluid at a vertical stretching sheet with variable thermal conductivity is investigated in this paper. Casson fluid model is used to describe the non-Newtonian fluid behavior. Using a similarity transformation, the governing equations are transformed into a system of coupled, nonlinear ordinary differential equations and the analytical solutions for the velocity and temperature fields are obtained via a semi-analytical algorithm based on the optimal homotopy analysis method. To validate the method, comparisons are made with the available results in the literature for some special cases and the results are found to be in excellent agreement. The characteristics of the velocity and the temperature fields in the boundary layer have been analyzed for several sets of values of the Casson parameter, the Prandtl number, the temperature dependent thermal conductivity parameter, the velocity exponent parameter and the mixed convection parameter. The presented results through graphs and tables reveal substantial effects of the pertinent parameters on the flow and heat transfer characteristics. Furthermore, an error analysis is offered using an exact residual error and average residual error methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(U_{0}\) :

Stretching rate

\(u \hbox { and } v\) :

Fluid velocity components along the x and y axes respectively

AC :

Constants

\(e_{ij}\) :

ijth component of deformation rate

n :

Velocity exponent parameter

r :

Temperature exponent parameter

\(c_p\) :

Specific heat at constant pressure

\(C_{fx}\) :

Skin friction coefficient

f :

Dimensionless stream function

g :

Acceleration due to gravity

\(Gr_x\) :

Local Grashof number

k(T):

Temperature-dependent thermal conductivity

\(k_\infty \) :

Thermal conductivity for away from the wall

\(Nu_x\) :

Local Nusselt number

\(\Pr \) :

Prandtl number

\(\hbox {P}_{\mathrm{y}}\) :

Yield stress of fluid

\(\hbox {Re}_x\) :

Local Reynolds number

T :

Fluid temperature

\(T_w\) :

Wall temperature

\(T_\infty \) :

Ambient temperature

u :

Axial velocity component

\(U_w\) :

Stretching velocity

\(\hbox {v}\) :

Radial velocity component

xy :

Cartesian coordinates along the surface and normal to it respectively

\(\tau _{ij}\) :

Stress teansor

\(\pi \) :

Product of the component of deformation rate with itself

\(\pi _c\) :

Critical value of

\(\beta \) :

Casson parameter

\(\beta _T\) :

Thermal expansion coefficient

\(\gamma \) :

Kinematic viscosity

\(\varepsilon \) :

Variable thermal conductivity parameter

\(\eta \) :

Similarity variable

\(\theta \) :

Dimensionless temperature

\(\mu \) :

Coefficient of viscosity

\(\mu _B\) :

Plastic dynamic viscosity

\(\lambda \) :

Buoyancy parameter

\(\psi \) :

Stream function

w :

Conditions at the stretching sheet

\(\infty \) :

Condition at infinity

‘:

Differentiation with respect to \(\eta \)

References

  1. Raftari, B., Yildirim, A.: The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comput. Math. Appl. 59, 3328–3337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mehdi, D., Jalil, M., Abbas, S.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 26, 448–479 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Marinca, V., Herisanu, N., Nemes, I.: Optimal homotopy asymptotic method with application to thin film flow. Cent. Eur. J. Phys. 6, 648–653 (2008)

    Google Scholar 

  4. Marinca, V., Herisanu, N.: An optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35, 710–715 (2008)

    Article  Google Scholar 

  5. Marinca, V., Herisanu, N., Bota, C., Marinca, B.: An optimal homotopy asymptotic method to the steady flow of a fourth grade fluid past a porous plate. Appl. Math. Lett. 22, 245–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liao, S.: An optimal homotopy analysis approach for strongly nonlinear differential equations. CNSNS 15, 2003–2016 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Crane, L.J.: Flow past a stretching plate. ZAMP 21, 645–655 (2006)

    Article  Google Scholar 

  8. Carragher, P., Carane, L.J.: Heat transfer on a continuous stretching sheet. ZAMM 62, 564–565 (1982)

    Article  Google Scholar 

  9. Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Mass Transf. 107, 248–250 (1985)

    Google Scholar 

  10. Chen, C.K., Char, M.I.: Heat transfer of a continuous, stretching surface with suction or blowing. J. Math. Anal. Appl. 135, 568–580 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ali, M.E.: Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf. 29, 227–234 (1994)

    Google Scholar 

  12. Vajravelu, K.: Viscous flow over a nonlinearly stretching sheet. Appl. Math. Comput. 124, 281–288 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Ishak, A., Nazar, R., Pop, I.: Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf. 44, 921–927 (2008)

    Article  Google Scholar 

  14. Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864–873 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Sahoo, B.: Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip. CNSNS 15, 602–615 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Javed, T., Abbas, Z., Sajid, M., Ali, N.: Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet. Int. J. Heat Mass Transf. 54, 2034–2042 (2011)

    Article  MATH  Google Scholar 

  17. Mabood, F., Khan, W.A., Ismail, A.I.Md.: MHD flow over exponential radiating stretching sheet using homotopy analysis method. J. King Saud Univ. Eng. Sci. (2014). doi:10.1016/j.jksues.2014.06.001

  18. Hassan, H.S.: Symmetry analysis for MHD viscous flow and heat transfer over a stretching sheet. Appl. Math. 6, 78–94 (2015)

    Article  Google Scholar 

  19. Moutsoglou, A., Chen, T.S.: Buoyancy effects in boundary layers on inclined, continuous moving sheets. ASME J. Heat Transf. 102, 371–373 (1980)

    Article  Google Scholar 

  20. Vajravelu, K.: Convection heat transfer at a stretching sheet with suction or blowing. J. Math. Anal. Appl. 188, 1002–1011 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, C.H.: Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf. 33, 471–476 (1998)

    Article  Google Scholar 

  22. Ali, F.M., Nazar, R., Arifini, N.M., Pop, I.: Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field. Appl. Math. Mech. 35, 155–166 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rajagopal, K.R., Na, T.Y., Gupta, A.S.: Flow of viscoelastic fluid over a stretching sheet. Rheol. Acta 23, 213–215 (1984)

    Article  Google Scholar 

  24. Hayat, T., Abbas, Z., Pop, I.: Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid. Int. J. Heat Mass Transf. 51, 3200–3206 (2008)

    Article  MATH  Google Scholar 

  25. Ishak, A., Nazar, R., Pop, I.: Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids. Phys. Lett. 372, 559–561 (2008)

    Article  MATH  Google Scholar 

  26. Prasad, K.V., Datti, P.S., Vajravelu, K.: Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet. Int. J. Heat Mass Transf. 53, 879–888 (2010)

    Article  MATH  Google Scholar 

  27. Makinde, D., Aziz, A.: Mixed convection from a convectively heated vertical plate to a fluid with internal heat generation. J. Heat Transf. 133, 122501 (2011)

    Article  Google Scholar 

  28. Vajravelu, K., Prasad, K.V., Sujatha, A.: Convection heat transfer in a Maxwell fluid at a non-isothermal surface. Cent. Eur. J. Phys. 9, 807–815 (2011)

    Google Scholar 

  29. Hsiao, K.-L.: MHD mixed convection for viscoelastic fluid past a porous wedge. Int. J. Non-Linear Mech. 46, 1–8 (2011)

    Article  Google Scholar 

  30. Hsiao, K.-L.: Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects. Energy 59, 494–502 (2013)

    Article  Google Scholar 

  31. Nadeem, S., Rizwan, U.H., Khan, Z.H.: Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Appl. Nanosci. 4, 625–631 (2014)

    Article  Google Scholar 

  32. Prasad, K.V., Vajravelu, K., Vaidya, Hanumesh, Raju, B.T.: Heat transfer in a non-Newtonian nanofluid film over a stretching surface. J. Nanofluid 4, 536–547 (2015)

    Article  Google Scholar 

  33. Hsiao, K.-L.: Corrigendum to “Heat and mass mixed convection for MHD viscoelastic fluid past a stretching sheet with Ohmic dissipation”. [Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 1803–1812]. CNSNS, 28, 232 (2015). 1–3

  34. Hsiao, K.-L.: Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 98, 850–861 (2016)

    Article  Google Scholar 

  35. Prasad, K.V., Dulal, P., Datti, P.S.: MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet. CNSNS 14, 2178–2189 (2009)

    Google Scholar 

  36. Casson, N.: A flow equation for pigment-oil suspensions of the printing ink type. In: Mill, C.C. (ed.) Rheology of Disperse Systems, pp. 84–104. Pergamon Press, Oxford (1959)

    Google Scholar 

  37. Charm, S., Kurland, G.: Viscometry of human blood for shear rates of \(100{,}000\, \text{ s }^{-1}\). Nature 206, 617–618 (1965)

    Article  Google Scholar 

  38. Mustafa, M., Hayat, T., Pop, I., Hendi, A.: Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet. Z. Naturforsch 67, 70–76 (2012)

    Article  Google Scholar 

  39. Pramanik, S.: Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Eng. J. 5, 205–212 (2014)

    Article  Google Scholar 

  40. Chiam, T.C.: Heat transfer with variable thermal conductivity in a stagnation point flow towards a stretching sheet. Int. Commun. Heat Mass Transf. 23, 239–248 (1996)

    Article  Google Scholar 

  41. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. CNSNS 15, 2003–2016 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Liao, S.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  43. Fan, T., You, X.: Optimal homotopy analysis method for nonlinear differential equations in the boundary layer. Numer. Algorithm 62, 337–354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors appreciate the constructive comments of the reviewers which led to definite improvements in the paper. CON was financially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through General Research Fund Project No. 17206615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-On Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajravelu, K., Prasad, K.V., Vaidya, H. et al. Mixed Convective Flow of a Casson Fluid over a Vertical Stretching Sheet. Int. J. Appl. Comput. Math 3, 1619–1638 (2017). https://doi.org/10.1007/s40819-016-0203-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0203-6

Keywords

Navigation