Skip to main content
Log in

Two-component spinors in spacetimes with torsionful affinities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The essentially unique torsionful version of the classical two-component spinor formalisms of Infeld and van der Waerden is presented. All the metric spinors and connecting objects that arise here are formally the same as the ones borne by the traditional formalisms. Any spin-affine connexion appears to possess a torsional part which is conveniently chosen as a suitable asymmetric contribution. Such a torsional affine contribution thus supplies a gauge-invariant potential that can eventually be taken to carry an observable character, and thereby effectively takes over the role of any trivially realizable symmetric contribution. The overall curvature spinors for any spin-affine connexion accordingly emerge from the irreducible decomposition of a mixed world-spin object which in turn comes out of the action on elementary spinors of a typical torsionful second-order covariant derivative operator. Explicit curvature expansions are likewise exhibited which fill in the gap related to their absence from the literature. It is then pointed out that the utilization of the torsionful spinor framework may afford locally some new physical descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Trautman, Encyclopedia of Mathematical Physics, edited by J.P. Françoise, G.L. Naber, S.T. Tsou, Vol. 2 (Elsevier, Oxford, 2006) p. 189.

  2. S. Capozziello et al., Int. J. Geom. Methods Mod. Phys. 5, 765 (2008).

    Article  MathSciNet  Google Scholar 

  3. F.W. Hehl et al., Rev. Mod. Phys. 48, 393 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Penrose, W. Rindler, Spinors and Space-Time, Vol. 1 (Cambridge University Press, 1984).

  5. T.W. Kibble, J. Math. Phys. 2, 212 (1961).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. D.W. Sciama, On the Analogy Between Charge and Spin in General Relativity, in Recent Developments in General Relativity (Pergamon and PWN, Oxford, 1962).

  7. S. Vignolo, L. Fabbri, Int. J. Geom. Methods Mod. Phys. 9, 1250054 (2012).

    Article  MathSciNet  Google Scholar 

  8. S. Capozziello et al., Class. Quantum Grav. 24, 6417 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. N.J. Poplawski, Phys. Lett. B 694, 181 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Fabbri, S. Vignolo, Int. J. Theor. Phys. 51, 3186 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  11. L.H. Ryder, I.L. Shapiro, Phys. Lett. A 247, 21 (1998).

    Article  ADS  Google Scholar 

  12. V. De Sabbata, C. Sivaram, Astrophys. Space Sci. 158, 347 (1989).

    Article  ADS  Google Scholar 

  13. S. Capozziello et al., Eur. Phys. J. C 72, 1908 (2012).

    Article  ADS  Google Scholar 

  14. T.P. Sotiriou, S. Liberati, Ann. Phys. 322, 935 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. L. Infeld, B.L. Van der Waerden, Sitzber. Akad. Wiss., Physik-math. Kl. 9, 380 (1933).

    Google Scholar 

  17. H. Weyl, Z. Phys. 56, 330 (1929).

    Article  ADS  MATH  Google Scholar 

  18. J.G. Cardoso, Czech J. Phys. 4, 401 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. J.G. Cardoso, Adv. Appl. Clifford Algebras 22, 985 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Penrose, Ann. Phys. 10, 171 (1960).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. L. Witten, Phys. Rev. 1, 357 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  22. J.G. Cardoso, Acta Phys. Pol. 38, 2525 (2007).

    ADS  MathSciNet  Google Scholar 

  23. J.G. Cardoso, Nuovo Cimento B 124, 631 (2009).

    ADS  MathSciNet  Google Scholar 

  24. J. G. Cardoso, Wave Equations for Invariant Infeld-van der Waerden Wave Functions for Photons and Their Physical Significance, in Photonic Crystals: Optical Properties, Fabrication , editid by William L. Dahl (Nova Science Publishers, Inc., 2010) ISBN: 978-1-61122-413-9.

  25. H. Jehle, Phys. Rev. 75, 1609 (1949).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. W.L. Bade, H. Jehle, Rev. Mod. Phys. 25, 714 (1953).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. P.G. Bergmann, Phys. Rev. 107, 624 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. E.T. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Penrose, W. Rindler, Spinors and Space-Time, Vol. 2 (Cambridge University Press, 1986).

  30. J. Plebanski, Acta Phys. Pol. 27, 361 (1965).

    MathSciNet  Google Scholar 

  31. R. Penrose, Found. Phys. 13, 325 (1983).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, J.G. Two-component spinors in spacetimes with torsionful affinities. Eur. Phys. J. Plus 130, 10 (2015). https://doi.org/10.1140/epjp/i2015-15010-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15010-0

Keywords

Navigation