Skip to main content
Log in

Silver-doped cadmium oxide nanoparticles: Synthesis, structural and optical properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper reports the synthesis and detailed characterization of silver (Ag)-doped cadmium oxide (Ag-CdO) nanoparticles which were prepared by the facile co-precipitation method. The prepared nanoparticles were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and diffused reflectance spectroscopy (DRS). Further, the effect of various Ag-doping concentrations on the morphological, structural and optical properties of Ag-doped CdO nanoparticles were also examined and presented in this paper. The XRD results revealed that pure and Ag-doped CdO possess a face-centered cubic (FCC) crystal structure. Importantly, the band gap (Eg) of Ag-doped CdO nanoparticles was examined by diffused reflectance spectroscopy using the Kubelka-Munk method. The optical energy band gap values of Ag-doped CdO nanoparticles with various Ag doping concentrations, i.e. 0,1, 5, 10, 15, 20, 30%, were found to be 1.625, 1.64, 1.73, 1.89, 1.91, 1.93, 1.95 eV, respectively. Interestingly, it was seen that with increasing the Ag concentrations the band gap energies also increases. The present work demonstrates that Ag-doped CdO nanoparticles possess good optical properties and hence present themselves as a potential candidate for various high-technological electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Ginley, C. Bright (Editors), Special Issue on Transparent Conducting Oxides, in MRS Bull, Vol. 25 (2000).

  2. T.J. Coutts, T.O. Mason, J.D. Perkins, D.S. Ginley, Electrochem. Soc. Proc. 99-1, 274 (1999).

    Google Scholar 

  3. X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C. DeHart, J.C. Keane, A. Duda, T.J. Coutts, S. Asher, D.H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery, P. Sheldon, in Proceedings of the NCPV Program ReView Meeting.

  4. K. Kawamura, M. Takahashi, M. Yagihara, T. Nakayama, European Patent Application, 2003, EP 1271561, A2 20030102, CAN 138:81680, AN (2003) 4983.

  5. D.R. Kammler, T.O. Mason, D.L. Young, T.J. Coutts, D. Ko, K.R. Poeppelmeier, D.L. Williamson, J. Appl. Phys. 90, 5979 (2001).

    Article  ADS  Google Scholar 

  6. T.O. Mason, G.B. Gonzalez, D.R. Kammler, N. Mansourian-Hadavi, B.J. Ingram, Thin Solid Films 411, 106 (2002).

    Article  ADS  Google Scholar 

  7. J.R. Babcock, A.C. Wang, A.W. Metz, N.L. Edleman, M.V. Metz, M.A. Lane, C.R. Kannewurf, T. Marks, J. Chem. Vap. Deposition 7, 239 (2001).

    Article  Google Scholar 

  8. A.C. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, R. Asahi, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T. Marks, J. Proc. Natl. Acad. Sci. U.S.A. 98, 7113 (2001).

    Article  ADS  Google Scholar 

  9. R. Asahi, A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Thin Solid Films 411, 101 (2002).

    Article  ADS  Google Scholar 

  10. A.W. Metz, J.R. Ireland, J.G. Zheng, R.P.S.M. Lobo, Y. Yang, J. Ni, C.L. Stern, V.P. Dravid, N. Bontemps, C.R. Kannewurf, K.R. Poeppelmeier, T.J. Marks, J. Am. Chem. Soc. 126, 8477 (2004).

    Article  Google Scholar 

  11. S. Jin, Y. Yang, J.E. Medvedeva, J.R. Ireland, A.W. Metz, J. Ni, C.R. Kannewurf, A.R. Freeman, T.J. Marks, J. Am. Chem. Soc. 126, 13787 (2004).

    Article  Google Scholar 

  12. M. Yan, M. Lane, C.R. Kannewurf, R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001).

    Article  ADS  Google Scholar 

  13. Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002).

    Article  ADS  Google Scholar 

  14. Y. Dou, R.G. Egdell, T. Walker, D.S.L. Law, G. Beamson, Surf. Sci. 398, 241 (1998).

    Article  ADS  Google Scholar 

  15. A.A. Dakhel, Phys. Status Solidi (a) 205, 2704 (2008).

    Article  ADS  Google Scholar 

  16. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Curr. Appl. Phys. 9, 673 (2009).

    Article  ADS  Google Scholar 

  17. S. Shu, Y. Yang, J.E. Medvedova, J.R. Ireland, A.W. Metz, J. Ni, C.R. Kannewurf, A.J. Freeman, T.J. Tobin, J. Am. Chem. Soc. 126, 13787 (2004).

    Article  Google Scholar 

  18. A.A. Dakhel, Thin Solid Films 518, 1712 (2010).

    Article  ADS  Google Scholar 

  19. A.A. Dakhel, J. Alloys Compd. 475, 51 (2009).

    Article  Google Scholar 

  20. A.A. Dakhel, Solar Energy 83, 934 (2009).

    Article  ADS  Google Scholar 

  21. A.A. Dakhel, J. Mater. Sci. 46, 6925 (2011).

    Article  ADS  Google Scholar 

  22. F. Yakuphanoglu, Solar Energy 85, 2704 (2011).

    Article  ADS  Google Scholar 

  23. L. Gao, Y. Zhang, J.-M. Zhang, K.-W. Xu, Appl. Surf. Sci. 257, 2498 (2011).

    Article  ADS  Google Scholar 

  24. J. Morales, L. Sanchez, Solid State Ionics 126, 219 (1999).

    Article  Google Scholar 

  25. K. Hanamoto, M. Sasaki, K. Miyatani, C. Kaito, H. Miki, Y. Nakayama, Nucl. Instrum. Methods Phys. Res. B 173, 287 (2001).

    Article  ADS  Google Scholar 

  26. X. Lou, X. Zhao, X. He, Solar Energy 83, 2103 (2009).

    Article  ADS  Google Scholar 

  27. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  ADS  Google Scholar 

  28. R.A. Abram, G.J. Ress, B.L.H. Wilson, Adv. Phys. 27, 799 (1978).

    Article  ADS  Google Scholar 

  29. K.F. Berggren, B.E. Sernelius, Phys. Rev. B 24, 1971 (1981).

    Article  ADS  Google Scholar 

  30. A. Gulino, G. Tabbi, Appl. Surf. Sci. 245, 322 (2005).

    Article  ADS  Google Scholar 

  31. K.R. Brown, A.P. Fox, M.J. Natan, J. Am. Chem. Soc. 118, 1154 (1996).

    Article  Google Scholar 

  32. L. Bao, S.M. Mahurin, R.G. Haire, S. Dai, Anal. Chem. 75, 6614 (2003).

    Article  Google Scholar 

  33. S. Kidambi, J.H. Dai, J. Li, L.M. Bruening, J. Am. Chem. Soc. 126, 2658 (2004).

    Article  Google Scholar 

  34. S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Hydrogen Energy 34, 5260 (2009).

    Article  Google Scholar 

  35. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Massachusetts, 1956).

  36. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103 (2005).

    Article  Google Scholar 

  37. D.P. Padiyan, A. Marikini, K.R. Murli, Math. Chem. Phys. 78, 51 (2002).

    Article  Google Scholar 

  38. C.S. Barret, T.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980).

  39. S. Ilican, Y. Caglar, M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008).

    Google Scholar 

  40. C. Aydin, H.M. El-Nasser, F. Yakuphanoglu, I.S. Yahia, M. Aksoy, J. Alloys Compd. 509, 854 (2011).

    Article  Google Scholar 

  41. C. Aydin, M.S. Abd El-sadek, Kaibo Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013).

    Article  ADS  Google Scholar 

  42. J. Tauc, R. Grigorvici, Y. Yanca, Phys. Status Solidi 15, 627 (1966).

    Article  Google Scholar 

  43. J. Tauc, Amorphous and liquid semiconductors (Plenum Press, New York, 1974) p. 171.

  44. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

  45. P. Kubelka, F. Munk, Z. Tech. Phys. (Leipzig) 12, 593 (1931).

    Google Scholar 

  46. A. Escobedo-Morales, E. Sanchez-Mora, U. Pal, Rev. Mex. Fis. S53, 18 (2007).

    Google Scholar 

  47. T.S. Moss, Proc. Phys. Soc. London B 67, 775 (1954).

    Article  ADS  Google Scholar 

  48. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998).

    Article  ADS  Google Scholar 

  49. C. Aydin, Omar A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Hazmi, I.S. Yahia, F. El-Tantawy, F. Yakuphanoglu, J. Electroceram. 29, 155 (2012).

    Article  Google Scholar 

  50. Y. Fahrettin, J. Alloys Compd. 507, 184 (2010).

    Article  Google Scholar 

  51. A.A.M. Farag, I.S. Yahia, Opt. Commun. 283, 4310 (2010).

    Article  ADS  Google Scholar 

  52. T.S. Moss, Optical Process in Semiconductors (Butter Worths, London, 1959).

  53. P.P. Banerjee, Proc. IEEE 73, 1859 (2005).

    Article  Google Scholar 

  54. F. Abeles, Optical Properties of Solids (North-Holland Publishing Company, London, 1972).

  55. F. Yakuphanoglu, M. Kandaz, M.N. Yarathýr, F.B. Senkal, Physica B 393, 235 (2007).

    Article  ADS  Google Scholar 

  56. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Wiley, New York, 1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, A. Silver-doped cadmium oxide nanoparticles: Synthesis, structural and optical properties. Eur. Phys. J. Plus 129, 263 (2014). https://doi.org/10.1140/epjp/i2014-14263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14263-3

Keywords

Navigation