Skip to main content
Log in

Predicting protein-ligand and protein-peptide interfaces

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The paper deals with the identification of binding sites and concentrates on interactions involving small interfaces. In particular we focus our attention on two major interface types, namely protein-ligand and protein-peptide interfaces. As concerns protein-ligand binding site prediction, we classify the most interesting methods and approaches into four main categories: (a) shape-based methods, (b) alignment-based methods, (c) graph-theoretic approaches and (d) machine learning methods. Class (a) encompasses those methods which employ, in some way, geometric information about the protein surface. Methods falling into class (b) address the prediction problem as an alignment problem, i.e. finding protein-ligand atom pairs that occupy spatially equivalent positions. Graph theoretic approaches, class (c), are mainly based on the definition of a particular graph, known as the protein contact graph, and then apply some sophisticated methods from graph theory to discover subgraphs or score similarities for uncovering functional sites. The last class (d) contains those methods that are based on the learn-from-examples paradigm and that are able to take advantage of the large amount of data available on known protein-ligand pairs. As for protein-peptide interfaces, due to the often disordered nature of the regions involved in binding, shape similarity is no longer a determining factor. Then, in geometry-based methods, geometry is accounted for by providing the relative position of the atoms surrounding the peptide residues in known structures. Finally, also for protein-peptide interfaces, we present a classification of some successful machine learning methods. Indeed, they can be categorized in the way adopted to construct the learning examples. In particular, we envisage three main methods: distance functions, structure and potentials and structure alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Skolnick, M. Brylinski, Brief. Bioinform. 10, 378 (2009) DOI:10.1093/bib/bbp017.

    Article  Google Scholar 

  2. G.R. Stockwell, J.M. Thornton, J. Mol. Biol. 356, 928 (2006).

    Article  Google Scholar 

  3. B. Huang, Focus Struct. Biol. 8, 25 (2013).

    Article  Google Scholar 

  4. M.L. Benson, R.D. Smith, N.A. Khazanov, B. Dimcheff, J. Beaver, P. Dresslar, J. Nerothin, H.A. Carlson, Nucl. Acids Res. 36, D674 (2008) DOI:10.1186/1471-2105-11-488.

    Article  Google Scholar 

  5. J. Yang, A. Roy, Y. Zhang, Nucl. Acids Res. 41, D1096 (2012) DOI:10.1093/nar/gks966.

    Article  Google Scholar 

  6. O.V. Kalinina, O. Wichmann, G. Apic, R.B. Russell, PLoS Comput. Biol. 7, e1002043 (2011).

    Article  ADS  Google Scholar 

  7. I. Wallach, R. Lilien, Bioinformatics 25, 615 (2009) http://compbio.cs.toronto.edu/psmdb/.

    Article  Google Scholar 

  8. G. Nicola, C.A. Smith, R. Abagyan, J. Comput. Biol. 15, 231 (2008).

    Article  Google Scholar 

  9. Georgetown University Medical Center, Innovation center for biomedical informatics, http://icbi.georgetown.edu/biomedical/drug-discovery/ligand/.

  10. J. Ito, Y. Tabei, K. Shimizu, K. Tsuda, K. Tomii, Nucl. Acids Res. 40, D541 (2012) http://possum.cbrc.jp/PoSSuM/database.html.

    Article  Google Scholar 

  11. A. Loffet, J. Peptide Sci. 8, 1 (2002) DOI:10.1002/psc.366.

    Article  Google Scholar 

  12. P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug Discov. Today 15, 40 (2010) DOI:10.1016/j.drudis.2009.10.009.

    Article  Google Scholar 

  13. V. Neduva, R. Linding, I. Su-Angrand, A. Stark, F. De Masi, T.J. Gibson, J. Lewis, L. Serrano, R.B. Russell, PLoS Biology 3, e405 (2005) DOI:10.1371/journal.pbio.0030405.

    Article  Google Scholar 

  14. Rosetta Design Group, Macromolecular modeling blog, http://rosettadesigngroup.com/blog/742/the-structural-basis-of-peptide-protein-binding-strategies/.

  15. D. Gfeller, FEBS Lett. 586, 2764 (2012).

    Article  Google Scholar 

  16. F. Lampariello, G. Liuzzi, J. Optim. Theor. Appl. (2014) DOI:10.1007/s10957-014-0525-7.

  17. I. Antes, Proteins: Struct. Funct. Bioinform. 78, 1084 (2010).

    Article  Google Scholar 

  18. D. Duhovny, R. Nussinov, H. Wolfson, Efficient unbound docking of rigid molecules, in Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI) Rome, Italy, edited by Gusfield, Lecture Notes in Computer Science, Vol. 2452 (Springer Verlag, 2002) pp. 185–200.

  19. D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H. Wolfson, Nucl. Acids Res. 33, 363 (2005).

    Article  Google Scholar 

  20. P. Vanhee, J. Reumers, F. Stricher, L. Baeten, L. Serrano, J. Schymkowitz, F. Rousseau, Nucl. Acids Res. 38, D545 (2010) DOI:10.1093/nar/gkp893 http://pepx.switchlab.org/.

    Article  Google Scholar 

  21. T. Gibson, F. Diella, H. Dinkel, K. Gould, C. Gemünd, C. Chica, S. Cameron, N. Blom, Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins, http://phospho.elm.eu.org/.

  22. T. Mi, J.C. Merlin, S. Deverasetty, M.R. Gryk, T.J. Bill, A.W. Brooks, L.Y. Lee, V. Rathnayake, C.A. Ross, D.P. Sargeant, C.L. Strong, P. Watts, S. Rajasekaran, M.R. Schiller, Nucl. Acids Res. 40, D252 (2012) DOI:10.1093/nar/gkr1189.

    Article  Google Scholar 

  23. J.C. Obenauer, L.C. Cantley, M.B. Yaffe, Nucl. Acids Res. 31, 3635 (2003).

    Article  Google Scholar 

  24. R. Amanchy, B. Periaswamy, S. Mathivanan, R. Reddy, S.G. Tattikota, A. Pandey, Nature Biotechnol. 25, 285 (2007).

    Article  Google Scholar 

  25. T. Hertz, A. Bar-Hillel, D. Weinshall, Learning distance functions for image retrieval, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR04) (Washington DC, USA, 2004).

  26. T. Shtatland, D. Guettler, M. Kossodo, M. Pivovarov, R. Weissleder, BMC Bioinform. 8, 280 (2007).

    Article  Google Scholar 

  27. N. London, D. Movshovitz-Attias, O. Schueler-Furman, Structure 18, 188 (2010) DOI:10.1016/j.str.2009.11.012.

    Article  Google Scholar 

  28. A. Shulman-Peleg, R. Nussinov, H.J. Wolfson, J. Mol. Biol. 339, 607 (2004).

    Article  Google Scholar 

  29. J.A. Barker, J.M. Thornton, Bioinformatics 19, 1644 (2003) DOI:10.1093/bioinformatics/btg226.

    Article  Google Scholar 

  30. T.A. Binkowski, Larisa Adamian, Jie Liang, J. Mol. Biol. 332, 505 (2003).

    Article  Google Scholar 

  31. T.A. Binkowski, A. Joachimiak, J. Liang, Protein Sci. 14, 2972 (2005).

    Article  Google Scholar 

  32. H. Yao, D.M. Kristensen, I. Mihalek, M.E. Sowa, C. Shaw, M. Kimmel, L. Kavraki, O. Lichtarge, J. Mol. Biol. 326, 255 (2003).

    Article  Google Scholar 

  33. C. Hofbauer, A. Aszódi, J. Chem. Inf. Model. 45, 414 (2005) DOI:10.1021/ci0497049.

    Article  Google Scholar 

  34. N. Kinoshita, J. Furui, H. Nakamura, J. Struct. Funct. Genomics 2, 9 (2001).

    Article  Google Scholar 

  35. R. Minai, Y. Matsuo, H. Onuki, H. Hirota, Proteins Struct. Funct. Bioinform. 72, 367 (2008).

    Article  Google Scholar 

  36. D. Kuhn, N. Weskamp, S. Schmitt, E.H. Hullermeier, G. Klebe, J. Mol. Biol. 359, 1023 (2006).

    Article  Google Scholar 

  37. G. Ausiello, P.F. Gherardini, P. Marcatili, A. Tramontano, A. Via, M. Helmer-Citterich, BMC Bioinform. 9, S2 (2008) DOI:10.1186/1471-2105-9-S2-S2.

    Article  Google Scholar 

  38. M. Jambonand, O. Andrieu, C. Combet, G. Deleage, F. Delfaud, C. Geourjon, Bioinformatics 21, 3929 (2005).

    Article  Google Scholar 

  39. A.T.R. Laurie, R.M. Jackson, Curr. Protein Peptide Sci. 21, 1908 (2005).

    Google Scholar 

  40. S. Henrich, M.H. Outi Salo-Ahen, B. Huang, F.F. Rippmann, G. Cruciani, R.C. Wade, J. Mol. Recognit. 23, 209 (2010).

    Google Scholar 

  41. F. Xin, P. Radivojac, Curr. Protein Peptide Sci. 12, 456 (2011).

    Article  Google Scholar 

  42. R. Nussinov, H.J. Wolfson, Proc. Natl. Acad. Sci. 88, 10495 (1991).

    Article  ADS  Google Scholar 

  43. D. Fischer, H.J. Wolfson, S.L. Lin, R. Nussinov, Protein Sci. 3, 769 (1994).

    Article  Google Scholar 

  44. A.C. Wallace, N. Borkakoti, J.M. Thornton, Protein Sci. 6, 2308 (1997).

    Article  Google Scholar 

  45. J.S. Fetrow, J. Skolnick, J. Mol. Biol. 281, 949 (1998).

    Article  Google Scholar 

  46. A.T.R. Laurie, R.M. Jackson, Bioinformatics 21, 1908 (2005).

    Article  Google Scholar 

  47. M. Comin, F. Dellaert, C. Guerra, J. Comput. Biol. 16, 1577 (2009).

    Article  MathSciNet  Google Scholar 

  48. S.E. Leicester, J.L. Finney, R.P. Bywater, J. Math. Chem. 16, 315 (1994).

    Article  MATH  Google Scholar 

  49. D.W. Ritchie, G.J.L. Kemp, J. Comput. Chem. 20, 383 (1999).

    Article  Google Scholar 

  50. M.E. Bock, C. Garutti, C. Guerra, J. Comput. Biol. 14, 285 (2007).

    Article  MathSciNet  Google Scholar 

  51. W. Cai, X. Shao, B. Maigret, J. Mol. Graph. Modell. 20, 313 (2002).

    Article  Google Scholar 

  52. R.J. Morris, R.J. Najmanovich, A. Kahraman, J.M. Thornton, Bioinformatics 21, 2347 (2005).

    Article  Google Scholar 

  53. V. Cantoni, A. Gaggia, R. Gatti, L. Lombardi, Geometrical constraints for ligand positioning, in Proceedings of Bioinformatics - BIOSTEC (2011) pp. 26–29.

  54. P.J. Besl, N.D. McKay, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239 (1992).

    Article  Google Scholar 

  55. A. Efrat, A. Itai, M.J. Katz, Algorithmica 31, 1 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  56. M.L. Connolly, J. Appl. Crystallogr. 16, 548 (1983).

    Article  Google Scholar 

  57. J. Liang, H. Edelsbrunner, C. Woodward, Protein Sci. 7, 1884 (1998).

    Article  Google Scholar 

  58. P. Bertolazzi, C. Guerra, G. Liuzzi, BMC Bioinform. 11, 488 (2010) DOI:10.1186/1471-2105-11-488.

    Article  Google Scholar 

  59. P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, S. Lucidi, J. Global Optim. 10, 165 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  60. L. Cirio, S. Lucidi, F. Parasiliti, M. Villani, J. Appl. Electromagn. Mech. 16, 13 (2002).

    Google Scholar 

  61. W.L. Price, A controlled random search procedure for global optimization, in Towards Global Optimization, Vol. 2, edited by L. Dixon, G. Szego (North-Holland, Amsterdam, 1978).

  62. L. Ellingson, J. Zhang, PLoS ONE 7, e40540 (2012) DOI:10.1371/journal.pone.0040540.

    Article  ADS  Google Scholar 

  63. P.J. Artymiuk, R.V. Spriggs, P. Willett, J. Am. Soc.r Inf. Sci. Technol. 56, 518 (2005).

    Article  Google Scholar 

  64. C. Hofbauer, H. Lohninger, A. Aszodi, J. Chem. Inf. Comput. Sci. 44, 837 (2004).

    Article  Google Scholar 

  65. R. Najmanovich, N. Kurbatova, J. Thornton, Bioinformatics 24, 105 (2008).

    Article  Google Scholar 

  66. M. Shatsky, A. Shulman-Peleg, R. Nussinov, H. Wolfson, J. Comput. Biol. 13, 407 (2006).

    Article  MathSciNet  Google Scholar 

  67. N. Weskamp, E. Hllermeier, D. Kuhn, G. Klebe, ACM/IEEE Trans. Comput. Biol. Bioinform. 4, 310 (2007).

    Google Scholar 

  68. V. Vacic, L.M. Iakoucheva, S. Lonardi, P. Radivojac, J. Comput. Biol. 17, 55 (2010).

    Article  MathSciNet  Google Scholar 

  69. H. Deng, G. Chen, W. Yang, J.J. Yang, Proteins 64, 34 (2006).

    Article  Google Scholar 

  70. N. Przulj, Bioinformatics 23, e177 (2007) DOI:10.1093/bioinformatics/btl301.

    Article  Google Scholar 

  71. S.C. Bagley, R.B. Altman, Protein Sci. 4, 622 (1995).

    Article  Google Scholar 

  72. A. Gutteridge, G.J. Bartlett, J.M. Thornton, J. Mol. Biol. 330, 719 (2003).

    Article  Google Scholar 

  73. W.S. Valdar, Proteins 48, 227 (2002).

    Article  Google Scholar 

  74. A.J. Bordner, Bioinformatics 24, 2865 (2008).

    Article  Google Scholar 

  75. E. Petsalaki, A. Stark, E. García-Urdiales, R.B. Russell, PLoS Comput. Biol. 5, e1000335 (2009) DOI:10.1371/journal.pcbi.1000335.

    Article  ADS  Google Scholar 

  76. M. Gribskov, A.D. McLachlan, D. Eisenberg, Proc. Natl. Acad. Sci. 84, 4355 (1987).

    Article  ADS  Google Scholar 

  77. L.G. Trabuco, S. Lise, E. Petsalaki, R.B. Russell, Nucl. Acids Res. 40, W423 (2012) DOI:10.1093/nar/gks398.

    Article  Google Scholar 

  78. D.J. Reiss, B. Schwikowski, Bioinformatics 20, i274 (2006).

    Article  Google Scholar 

  79. J.S. Liu, A.F. Neuwald, C.E. Lawrence, J. Am. Stat. Assoc. 90, 1156 (1995).

    Article  MATH  Google Scholar 

  80. T. Hertz, C. Yanover, BMC Bioinform. 7, S3 (2006) DOI:10.1186/1471-2105-7-S1-S3.

    Article  Google Scholar 

  81. P.A. Reche, J.P. Glutting, H. Zhang, E.L. Reinher, Immunogenetics 56, 405 (2004).

    Article  Google Scholar 

  82. L. Zhang, C. Shao, D. Zheng, Y. Gao, Mol. Cell. Proteomics 5, 1224 (2006).

    Article  Google Scholar 

  83. S. Giguère, M.M., F. Laviolette, A. Drouin, J. Corbeil, BMC Bioinform. 14, 82 (2013) DOI:10.1186/1471-2105-14-82.

    Article  Google Scholar 

  84. M. Nielsen, C. Lundegaard, T. Blicher, B. Peters, A. Sette, S. Justesen, S. Buus, O. Lund, PLoS Comput. Biol. 4, e1000107 (2008) http://dx.plos.org/10.1371.

    Article  ADS  Google Scholar 

  85. P. Zhou, X. Chen, Y. Wu, Z. Shang, Amino Acids 38, 199 (2010) http://dx.doi.org/10.1007/s00726-008-0228-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Liuzzi.

Additional information

Contribution to the Focus Point “Pattern Recognition Tools for Proteomics” edited by V. Cantoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolazzi, P., Guerra, C. & Liuzzi, G. Predicting protein-ligand and protein-peptide interfaces. Eur. Phys. J. Plus 129, 132 (2014). https://doi.org/10.1140/epjp/i2014-14132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14132-1

Keywords

Navigation