Skip to main content
Log in

Generalized second law of thermodynamics in the emergent universe for some viable models of f(T) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work is motivated by the study of the paper K. Karami, A. Abdolmaleki, J. Cosmol. Astropart. Phys. 04, 007 (2012), where the generalized second law (GSL) of thermodynamics has been investigated for a flat FRW universe for three viable models of f(T) gravity. We have here considered a non-flat universe and, accordingly, studied the behaviors of the equation-of-state (EoS) parameter ω and of the deceleration parameter q. Subsequently, using the first law of thermodynamics, we derived the expressions for the time derivative of the total entropy of a universe enveloped by apparent horizon. In the next phase, with the choice of scale factor a(t) pertaining to an emergent universe, we have investigated the sign of the time derivatives of total entropy for the models of f(T) gravity considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Nojiri, S.D. Odintsov, J. Phys. Conf. Ser. 66, 012005 (2007) DOI:10.1088/1742-6596/66/1/012005.

    Article  ADS  Google Scholar 

  3. S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 36, 1765 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.C.B. Abdalla, S. Nojiri, S.D. Odintsov, Class. Quantum Grav. 22, L35 (2005) DOI:10.1088/0264-9381/22/5/L01.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011).

    Article  ADS  Google Scholar 

  7. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. Zheng, Q-G. Huang, J. Cosmol. Astropart. Phys. 03, 002 (2011).

    Article  ADS  Google Scholar 

  9. J.B. Dent, S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 01, 009 (2011).

    Article  ADS  Google Scholar 

  10. G.R. Bengochea, Phys. Lett. B 695, 405 (2011).

    Article  ADS  Google Scholar 

  11. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011).

    Article  ADS  Google Scholar 

  12. Y.-F. Cai, S.-H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Class. Quantum Grav. 28, 215011 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Karami, A. Abdolmaleki, J. Cosmol. Astropart. Phys. 04, 007 (2012).

    Article  ADS  Google Scholar 

  14. S. Chattopadhyay, U. Debnath, Int. J. Mod. Phys. D 20, 1135 (2011).

    Article  ADS  MATH  Google Scholar 

  15. K. Bamba, C-Q. Geng, J. Cosmol. Astropart. Phys. 11, 008 (2011) DOI:10.1088/1475-7516/2011/11/008.

    Article  ADS  Google Scholar 

  16. K. Bamba et al., J. Cosmol. Astropart. Phys. 01, 021 (2011) DOI:10.1088/1475-7516/2011/01/021.

    Article  ADS  Google Scholar 

  17. K. Bamba, R. Myrzakulov, S. Nojiri, S.D. Odintsov, Phys. Rev. D 85, 104036 (2012).

    Article  ADS  Google Scholar 

  18. G.F.R. Ellis, R. Maartens, Class. Quantum Grav. 21, 223 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. G.F.R. Ellis, J. Murugan, C.G. Tsagas, Class. Quantum Grav. 21, 233 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Mukherjee, B.C. Paul, N.K. Dadhich, S.D. Maharaj, A. Beesham, Class. Quantum Grav. 23, 6927 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. U. Debnath, Class. Quantum Grav. 25, 205019 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Chattopadhyay, U. Debnath, Can. J. Phys. 89, 941 (2011).

    Article  ADS  Google Scholar 

  23. I. Brevik, S. Nojiri, S.D. Odintsov, L. Vanzo, Phys. Rev. D 70, 043520 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  24. K. Bamba, C.-Q. Geng, S. Nojiri, S.D. Odintsov, EPL 89, 50003 (2010) DOI:10.1209/0295-5075/89/50003.

    Article  ADS  Google Scholar 

  25. R. Ferraro, F. Fiorini, Phys. Lett. B 702, 75 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Bak, S.J. Rey, Class. Quantum Grav. 17, L83 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A. Sheykhi, Class. Quantum Grav. 27, 025007 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Akbar, Chin. Phys. Lett. 25, 4199 (2008).

    Article  ADS  Google Scholar 

  29. M. Jamil, E.N. Saridakis, M.R. Setare, J. Cosmol. Astropart. Phys. 11, 032 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, R., Pasqua, A. & Chattopadhyay, S. Generalized second law of thermodynamics in the emergent universe for some viable models of f(T) gravity. Eur. Phys. J. Plus 128, 12 (2013). https://doi.org/10.1140/epjp/i2013-13012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13012-6

Keywords

Navigation