Skip to main content
Log in

The evolution of neutrino masses and mixings in the 5D MSSM

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider a five-dimensional Minimal Supersymmetric Standard Model compactified on a S 1/Z 2 orbifold, and study the evolution of neutrino masses, mixing angles and phases for different values of β and different radii of compactification. We consider the usual four-dimensional Minimal Supersymmetric Standard Model limit plus two extra-dimensional scenarios: where all matter superfields can propagate in the bulk, and where they are constrained to the brane. We discuss in both cases the evolution of the mass spectrum, the implications for the mixing angles and the phases. We find that a large variation for the Dirac phase is possible, which makes models predicting maximal leptonic CP violation particularly appealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Cornell, A. Deandrea, L.-X. Liu, A.Tarhini, Phys. Rev. D 85, 056001 (2012) arXiv:1110.1942 [hep-ph].

    Article  ADS  Google Scholar 

  2. R.N. Mohapatra, S. Antusch, K.S. Babu, G. Barenboim, M.-C. Chen, A. de Gouvea, P. de Holanda, B. Dutta et al., Rep. Prog. Phys. 70, 1757 (2007) hep-ph/0510213.

    Article  ADS  Google Scholar 

  3. M. Raidal, A. van der Schaaf, I. Bigi, M.L. Mangano, Y.K. Semertzidis, S. Abel, S. Albino, S. Antusch et al., Eur. Phys. J. C 57, 13 (2008) arXiv:0801.1826 [hep-ph].

    Article  ADS  Google Scholar 

  4. DAYA-BAY Collaboration (F.P. An et al.), Phys. Rev. Lett. 108, 171803 (2012) arXiv:1203.1669 [hep-ex].

    Article  ADS  Google Scholar 

  5. RENO Collaboration (J.K. Ahn et al.), Phys. Rev. Lett. 108, 191802 (2012) arXiv:1204.0626 [hep-ex].

    Article  ADS  Google Scholar 

  6. K.S. Babu, Z. Phys. C 35, 69 (1987).

    Article  ADS  Google Scholar 

  7. L.-X. Liu, Int. J. Mod. Phys. A 25, 4975 (2010) arXiv:0910.1326 [hep-ph].

    Article  ADS  MATH  Google Scholar 

  8. A.S. Cornell, L.-X. Liu, Phys. Rev. D 83, 033005 (2011) arXiv:1010.5522 [hep-ph].

    Article  ADS  Google Scholar 

  9. L.-X. Liu, A.S. Cornell, PoS KRUGER 2010, 045 (2010) arXiv:1103.1527 [hep-ph].

    Google Scholar 

  10. P.H. Chankowski, Z. Pluciennik, Phys. Lett. B 316, 312 (1993) hep-ph/9306333.

    Article  ADS  Google Scholar 

  11. S. Antusch, M. Drees, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 519, 238 (2001) hep-ph/0108005.

    Article  ADS  Google Scholar 

  12. P.H. Chankowski, W. Krolikowski, S.Pokorski, Phys. Lett. B 473, 109 (2000) hep-ph/9910231.

    Article  ADS  Google Scholar 

  13. J.A. Casas, J.R. Espinosa, I. Navarro, JHEP 09, 048 (2003) arXiv:hep-ph/0306243.

    Article  ADS  Google Scholar 

  14. M. Blennow, H. Melbeus, T. Ohlsson, H. Zhang, JHEP 04, 052 (2011) arXiv:1101.2585 [hep-ph].

    Article  ADS  Google Scholar 

  15. S. Antusch, J. Kersten, M. Lindner, M. Ratz, Nucl. Phys. B 674, 401 (2003) hep-ph/0305273.

    Article  ADS  Google Scholar 

  16. A. Deandrea, J. Welzel, P. Hosteins, M.Oertel, Phys. Rev. D 75, 113005 (2007) hep-ph/0611172.

    Article  ADS  Google Scholar 

  17. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

    Article  ADS  Google Scholar 

  18. E.A. Mirabelli, M.E. Peskin, Phys. Rev. D 58, 065002 (1998) hep-th/9712214.

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Arkani-Hamed, T. Gregoire, J.G. Wacker, JHEP 03, 055 (2002) hep-th/0101233.

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Hebecker, Nucl. Phys. B 632, 101 (2002) hep-ph/0112230.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. T. Flacke, DESY-THESIS-2003-047.

  22. ATLAS Collaboration (G. Aad et al.), Eur. Phys. J. C 71, 1744 (2011) arXiv:1107.0561 [hep-ex].

    Article  ADS  Google Scholar 

  23. CMS Collaboration (S. Chatrchyan), arXiv:1211.4784 [hep-ex].

  24. P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002) hep-ph/0202074.

    Article  ADS  Google Scholar 

  25. W. Buchmuller, P. Di Bari, M. Plumacher, Nucl. Phys. B 665, 445 (2003) hep-ph/0302092.

    Article  ADS  Google Scholar 

  26. P.-H. Gu, Phys. Rev. D 81, 073002 (2010) arXiv:1001.1340 [hep-ph].

    Article  ADS  Google Scholar 

  27. S. Luo, Z.-z. Xing, Phys. Rev. D 86, 073003 (2012) arXiv:1203.3118 [hep-ph].

    Article  ADS  Google Scholar 

  28. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  MATH  Google Scholar 

  29. Particle Data Group Collaboration (K. Nakamura et al.), J. Phys. G 37, 075021 (2010) and 2011 partial update for the 2012 edition.

    Article  ADS  Google Scholar 

  30. Z.-z. Xing, H. Zhang, S. Zhou, Phys. Rev. D 77, 113016 (2008) arXiv:0712.1419 [hep-ph].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Cornell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornell, A.S., Deandrea, A., Liu, LX. et al. The evolution of neutrino masses and mixings in the 5D MSSM. Eur. Phys. J. Plus 128, 6 (2013). https://doi.org/10.1140/epjp/i2013-13006-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13006-4

Keywords

Navigation