Skip to main content
Log in

Renormalization group running of the neutrino mass operator in extra dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the renormalization group (RG) running of the neutrino masses and the leptonic mixing parameters in two different extra-dimensional models, namely, the Universal Extra Dimensions (UED) model and a model, where the Standard Model (SM) bosons probe an extra dimension and the SM fermions are confined to a four-dimensional brane. In particular, we derive the beta function for the neutrino mass operator in the UED model. We also rederive the beta function for the charged-lepton Yukawa coupling, and confirm some of the existing results in the literature. The generic features of the RG running of the neutrino parameters within the two models are analyzed and, in particular, we observe a power-law behavior for the running. We note that the running of the leptonic mixing angle θ 12 can be sizable, while the running of θ 23 and θ 13 is always negligible. In addition, we show that the tri-bimaximal and the bimaximal mixing patterns at a high-energy scale are compatible with low-energy experimental data, while a tri-small mixing pattern is not. Finally, we perform a numerical scan over the low-energy parameter space to infer the high-energy distribution of the parameters. Using this scan, we also demonstrate how the high-energy θ 12 is correlated with the smallest neutrino mass and the Majorana phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. K1 (1921) 966.

    Google Scholar 

  2. O. Klein, Quantum theory and five-dimensional theory of relativity, Z. Phys. 37 (1926) 895 [SPIRES].

    Article  ADS  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  4. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  5. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].

    ADS  Google Scholar 

  6. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  9. K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  11. T. Yanagida, in Proc. Workshop on the baryon number of the Universe and unified theories, O. Sawada and A. Sugamoto eds., Tsukuba Japan (1979), pg. 95.

  12. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  13. M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Nieuwenhuizen and D. Freedman eds., North Holland, Amsterdam The Netherlands (1979), pg. 315.

    Google Scholar 

  14. J.M. Frere, G. Moreau and E. Nezri, Neutrino mass patterns within the see-saw model from multi-localization along extra dimensions, Phys. Rev. D 69 (2004) 033003 [hep-ph/0309218] [SPIRES].

    ADS  Google Scholar 

  15. N. Haba, S. Matsumoto and K. Yoshioka, Observable Seesaw and its Collider Signatures, Phys. Lett. B 677 (2009) 291 [arXiv:0901.4596] [SPIRES].

    ADS  Google Scholar 

  16. M. Blennow, H. Melbéus, T. Ohlsson and H. Zhang, Signatures from an extra-dimensional seesaw model, Phys. Rev. D 82 (2010) 045023 [arXiv:1003.0669] [SPIRES].

    ADS  Google Scholar 

  17. T. Saito et al., Extra dimensions and Seesaw Neutrinos at the International Linear Collider, Phys. Rev. D 82 (2010) 093004 [arXiv:1008.2257] [SPIRES].

    ADS  Google Scholar 

  18. P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333] [SPIRES].

    ADS  Google Scholar 

  19. K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [SPIRES].

    ADS  Google Scholar 

  20. S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [SPIRES].

    ADS  Google Scholar 

  21. S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [SPIRES].

    ADS  Google Scholar 

  22. W. Chao and H. Zhang, One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw model, Phys. Rev. D 75 (2007) 033003 [hep-ph/0611323] [SPIRES].

    ADS  Google Scholar 

  23. M.A. Schmidt, Renormalization Group Evolution in the type-I + II seesaw model, Phys. Rev. D 76 (2007) 073010 [arXiv:0705.3841] [SPIRES].

    ADS  Google Scholar 

  24. J. Chakrabortty, A. Dighe, S. Goswami and S. Ray, Renormalization group evolution of neutrino masses and mixing in the Type-III seesaw mechanism, Nucl. Phys. B 820 (2009) 116 [arXiv:0812.2776] [SPIRES].

    Article  ADS  Google Scholar 

  25. J. Bergström, M. Malinský, T. Ohlsson and H. Zhang, Renormalization group running of neutrino parameters in the inverse seesaw model, Phys. Rev. D 81 (2010) 116006 [arXiv:1004.4628] [SPIRES].

    ADS  Google Scholar 

  26. D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [SPIRES].

    Article  ADS  Google Scholar 

  27. G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Power law blitzkrieg in universal extra dimension scenario, Nucl. Phys. B 760 (2007) 117 [hep-ph/0608208] [SPIRES].

    Article  ADS  Google Scholar 

  28. A.S. Cornell and L.-X. Liu, Evolution of the CKM Matrix in the Universal Extra Dimension Model, Phys. Rev. D 83 (2011) 033005 [arXiv:1010.5522] [SPIRES].

    ADS  Google Scholar 

  29. I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. K.R. Dienes, E. Dudas and T. Gherghetta, Extra spacetime dimensions and unification, Phys. Lett. B 436 (1998) 55 [hep-ph/9803466] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. S.A. Abel and S.F. King, On fixed points and fermion mass structure from large extra dimensions, Phys. Rev. D 59 (1999) 095010 [hep-ph/9809467] [SPIRES].

    ADS  Google Scholar 

  32. G. Bhattacharyya, S. Goswami and A. Raychaudhuri, Power law enhancement of neutrino mixing angles in extra dimensions, Phys. Rev. D 66 (2002) 033008 [hep-ph/0202147] [SPIRES].

    ADS  Google Scholar 

  33. T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [SPIRES].

    ADS  Google Scholar 

  34. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  35. B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [SPIRES].

    ADS  Google Scholar 

  36. S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].

    Article  ADS  Google Scholar 

  37. J.-w. Mei, Running neutrino masses, leptonic mixing angles and CP-violating phases: From M Z to Λ GUT , Phys. Rev. D 71 (2005) 073012 [hep-ph/0502015] [SPIRES].

    ADS  Google Scholar 

  38. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  39. P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].

    ADS  Google Scholar 

  40. Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].

    ADS  Google Scholar 

  41. T. Schwetz, M.A. Tórtola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  42. Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [SPIRES].

    ADS  Google Scholar 

  43. V.M. Lobashev, The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN, Nucl. Phys. A 719 (2003) 153 [SPIRES].

    ADS  Google Scholar 

  44. K. Eitel, Direct neutrino mass experiments, Nucl. Phys. Proc. Suppl. 143 (2005) 197 [SPIRES].

    Article  ADS  Google Scholar 

  45. M. Blennow and E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES, Comput. Phys. Commun. 181 (2010) 227 [arXiv:0903.3985] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  46. T.P. Cheng, E. Eichten and L.-F. Li, Higgs Phenomena in Asymptotically Free Gauge Theories, Phys. Rev. D9 (1974) 2259 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Melbéus.

Additional information

ArXiv ePrint: 1101.2585

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blennow, M., Melbéus, H., Ohlsson, T. et al. Renormalization group running of the neutrino mass operator in extra dimensions. J. High Energ. Phys. 2011, 52 (2011). https://doi.org/10.1007/JHEP04(2011)052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)052

Keywords

Navigation