Skip to main content
Log in

Improving variational mass-consistent models of hydrodynamic flows via boundary conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Variational mass-consistent models for the velocity field v have been used by mesoscale meteorological community to modeling the wind field from an observed field v 0 in a bounded region Ω with boundary Γ. Variational calculus reduces the problem to the solution of an elliptic equation for a Lagrange multiplier λ subject to Dirichlet Boundary Condition (DBC) on flow-through boundaries. In this work, it is shown that DBC decreases the regularity of λ and this in turn decreases the accuracy with which the velocity field satisfies the mass-balance. The boundary condition (BC) v · n = v T · ngiven by the true field v T on the whole boundary Γ, leads only to a Neumann boundary condition (NBC) for λ. Approximations of this BC are studied. Analytic and numerical results show that the velocity field U 0 obtained from v 0 by direct integration of the continuity equation, yields a NBC that improves significantly the fields obtained with DBC’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Daley, Atmospheric Data Analysis (Cambridge University Press, New York, 1991).

  2. R.A. Pielke, Mesoscale Meteorological Modeling (Academic Press, New York, 2002).

  3. C. Wunsch, The Ocean Circulation Inverse Problem (Cambridge University Press, New York, 1996).

  4. Markus Raffel, C.E. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, Berlin, 1998).

  5. P. Zannetti, Air Pollution Modeling: Theories, Computational Methods and Available Software (van Nostrand Reinhold, New York, 1990).

  6. C.F. Ratto, R. Festa, C. Romeo, O.A. Frumento, M. Galluzzi, Environ. Software92471994.

  7. C.F. Ratto, An overview of mass-consistent models, in Modeling of Atmospheric Flows, edited by D.P. Lalas, C.F. Ratto (World Scientific Publishing, Singapore, 1996) pp. 379--400.

  8. G.F. Homicz, Three-Dimensional Wind Field Modeling: A Review, Sandia National Laboratories, report SAN2002-2597 (2002).

  9. R. Martens, H. Thielen, T. Sperling, K. Masmeyer, Int. J. Environ. Pollut. 14, 573 (2000).

    Google Scholar 

  10. X. Guo, J.P. Palutikof, Boundary-Layer Meteorol. 53, 303 (1990).

    Article  ADS  Google Scholar 

  11. G. Gross, Boundary-Layer Meteorol. 77, 379 (1996).

    Article  ADS  Google Scholar 

  12. Y. Sasaki, Mon. Weather. Rev. 98, 875 (1970).

    Article  ADS  Google Scholar 

  13. M.H. Dickerson, J. Appl. Meteorol. 17, 241 (1978).

    Article  ADS  Google Scholar 

  14. C.A. Sherman, J. Appl. Meteorol. 17, 312 (1978).

    Article  ADS  Google Scholar 

  15. T. Kitada, A. Kaki, H. Ueda, L.K. Peters, Atmos. Environ. 17, 2181 (1983).

    Article  ADS  Google Scholar 

  16. C.G. Davis, S.S. Bunker, J.P. Mutschlecner, J. Climate Appl. Meteorol. 23, 235 (1984).

    Article  ADS  Google Scholar 

  17. T. Kitada, K. Igarashi, M. Owada, J. Climate Appl. Meteorol. 25, 767 (1986).

    Article  ADS  Google Scholar 

  18. N. Moussiopoulos, Th. Flassak, J. Appl. Meteorol. 25, 847 (1986).

    Article  ADS  Google Scholar 

  19. N. Moussiopoulos The diagnostic wind model CONDOR, in Modeling of Atmospheric Flows, edited by D.P. Lalas, C.F. Ratto (World Scientific Publishing, Singapore, 1996) pp. 379--400.

    Article  ADS  Google Scholar 

  20. J.C. Barnard, H.L. Wegley, T.R. Hiester, J. Climate Appl. Meteorol. 26, 675 (1987).

    Article  ADS  Google Scholar 

  21. D.G. Ross, I.N. Smith, P.C. Manins, D.G. Fox, J. Appl. Meteorol. 27, 785 (1988).

    Article  ADS  Google Scholar 

  22. H. Ishikawa, J. Appl. Meteorol. 33, 733 (1994).

    Article  ADS  Google Scholar 

  23. Y. Heta, J. Meteorol. Soc. Jpn 70, 783 (1992).

    Google Scholar 

  24. M. Harada, S. Hayashi, K. Wakimizu, J. Fac. Agric. Kyushu Univ. 44, 403 (2000).

    Google Scholar 

  25. E. Rodríguez, G. Montero, R. Montenegro, J.M. Escobar, J.M. Gonzalez-Yuste, Lect. Notes Comput. Sci. 2339, 950 (2002).

    Article  Google Scholar 

  26. Y. Wang, C. Williamson, D. Garvey, S. Chang, J. Cogan, J. Appl. Meteorol. 44, 1078 (2005).

    Article  ADS  Google Scholar 

  27. M.A. Núñez, C. Flores, H. Juárez, J. Comput. Meteorol. Sci. Eng. 7, 21 (2007).

    MATH  Google Scholar 

  28. N. Sanín, G. Montero, Adv. Eng. Software 38, 358 (2007).

    Article  MATH  Google Scholar 

  29. D. Carstoiu, V.E. Oltean, G. Gorghiu, A. Olteanu, A. Cernian, ``Approaches in wind modeling and air quality monitoring systems’’, Bulletin UASVM, Horticulture 65(2)/2008, pISSN 1843-5254, eISSN 1843-5394 (2008).

  30. C. Flores, H. Juárez, M.A. Núñez, M.L. Sandoval, Numer. Methods Partial Differ. Equ. 26, 826 (2010).

    MATH  Google Scholar 

  31. F. Desiato, S. Finardi, G. Brusasca, M.G. Morselli, Atmos. Environ. 32, 1141 (1998).

    Article  ADS  Google Scholar 

  32. D.W. Byun, J. Atmos. Sci. 56, 3808 (1999).

    Article  ADS  Google Scholar 

  33. N.L. Seaman, Atmos. Environ. 34, 2231 (2000).

    Article  ADS  Google Scholar 

  34. S. Finardi, G. Tinarelli, A. Nanni, G. Brusasca, G. Carboni, Int. J. Environ. Pollution 16, 472 (2001).

    Google Scholar 

  35. F. Castino, L. Rusca, G. Solari, J. Wind Eng. Ind. Aerodynam. 91, 1353 (2003).

    Article  Google Scholar 

  36. M.A. Núñez, G. Ramírez, G. H. Hernández, Análisis de métodos de interpolación de datos de viento basados en la ecuación de conservación de la masa, Reporte de investigación, Universidad Autónoma Metropolitana, División de Ciencias Básicas e Ingeniería, 1--65 (2004).

  37. M.A. Núñez, C. Flores, H. Juárez, J. Comput. Meteorol. Sci. Eng. 6, 365 (2006).

    MATH  Google Scholar 

  38. M.A. Núñez, New scheme to compute mass-consistent models of geophysical flows, in Proceedings of the I Workshop on Asymptotics for Parabolic and Hyperbolic Systems (Laboratóiro Nacional de Computação Científica, Petrópolis-R. J., 2008).

  39. K. Rektorys, Variational Methods in Mathematics, Science and Engineering (D. Reidel, Dordrecht, 1977).

  40. H. Hochstadt, Differential Equations: A Modern Approach (Dover, New York, 1964) Chapt. 6.

  41. R.L. Burden, J.D. Faires, Numerical Analysis (PWS-KENT, Boston, 1985).

  42. M.A. Núñez, J.E. Sánchez-Sánchez, Eur. Phys. J. Plus 127, 39 (2012).

    Article  Google Scholar 

  43. A. Zigmund Trigonometric Series, 2nd edition (Cambridge University Press, Cambridge, 2002).

  44. T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1965).

  45. V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equation, Theory and Algorithms (Springer, Berlin, 1986).

  46. A proof of relation \(\mathbb{V}^ \bot = \left\{ {\nabla q:q \in H_D^1 \left( \Omega \right)} \right\}\) is given in ref. 27, pp. 25, 26.

  47. J.D. Murray, Asymptotic Analysis (Springer, New York, 1984) p. 35, eqs. (2.38), (2.39).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, M.A. Improving variational mass-consistent models of hydrodynamic flows via boundary conditions. Eur. Phys. J. Plus 127, 40 (2012). https://doi.org/10.1140/epjp/i2012-12040-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12040-0

Keywords

Navigation