Skip to main content
Log in

A Consistent Stochastic Large-Scale Representation of the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we analyze the theoretical properties of a stochastic representation of the incompressible Navier–Stokes equations defined in the framework of the modeling under location uncertainty (LU). This setup built from a stochastic version of the Reynolds transport theorem incorporates a so-called transport noise and involves several specific additional features such as a large scale diffusion term, akin to classical subgrid models, and a modified advection term arising from the spatial inhomogeneity of the small-scale velocity components. This formalism has been numerically evaluated in a series of studies with a particular interest on geophysical flows approximations and data assimilation. In this work we focus more specifically on its theoretical analysis. We demonstrate, through classical arguments, the existence of martingale solutions for the stochastic Navier–Stokes equations in LU form. We show they are pathwise and unique for 2D flows. We then prove that if the noise intensity goes to zero, these solutions converge, up to a subsequence in dimension 3, to a solution of the deterministic Navier–Stokes equation. similarly to the grid convergence property of well established large-eddies simulation strategies, this result allows us to give some guarantee on the interpretation of the LU Navier–Stokes equations as a consistent large-scale model of the deterministic Navier–Stokes equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The use of Ito formula is not fully rigorous here. A regularization argument should be used. For instance, we can write the equation satisfied by \(P_n\tilde{V}\), apply Ito formula to \(e(t)|P_n\tilde{V}|^2\) and then let \(n\rightarrow \infty \).

References

  1. Bauer, W., Chandramouli, P., Chapron, B., Li, L., Mémin, E.: Deciphering the role of small-scale inhomogeneity on geophysical flow structuration: a stochastic approach. J. Phys. Oceanogr. 50(4), 983–1003 (2020)

    Article  ADS  Google Scholar 

  2. Bauer, W., Chandramouli, P., Li, L., Mémin, E.: Stochastic representation of mesoscale eddy effects in coarse-resolution barotropic models. Ocean Model. 151, 101646 (2020)

    Article  Google Scholar 

  3. Berner, J., et al.: Stochastic parameterization: toward a new view of weather and climate models. Bull. Am. Meteor. Soc. 98, 565–588 (2017)

    Article  ADS  Google Scholar 

  4. Berselli, L., Iliescu, T., Layton, W.: Mathematics of Large Eddy Simulation of Turbulent Flows, 1st edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Brecht, R., Li, L., Bauer, W., Mémin, E.: Rotating shallow water flow under location uncertainty with a structure-preserving discretization. J. Adv. Model. Earth Syst. 13(12) (2021)

  6. Brzeźniak, Z., Capinski, M., Flandoli, F.: Stochastic Navier–Stokes equations with multiplicative noise. Stochastic Anal. Appl. 10(5), 523–532 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buizza, R., Miller, M., Palmer, T.N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2887–2908 (1999)

    Article  ADS  Google Scholar 

  8. Chandramouli, P., Heitz, D., Laizet, S., Mémin, E.: Coarse large-eddy simulations in a transitional wake flow with flow models under location uncertainty. Comput. Fluids 168, 170–189 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandramouli, P., Mémin, E., Heitz, D.: 4d large scale variational data assimilation of a turbulent flow with a dynamics error model. J. Comput. Phys. 412, 109446 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapron, B., Dérian, P., Mémin, E., Resseguier, V.: Large-scale flows under location uncertainty: a consistent stochastic framework. QJRMS 144(710), 251–260 (2018)

    Article  ADS  Google Scholar 

  11. Cotter, C., Crisan, D., Holm, D., Pan, W., Shevchenko, I.: Numerically modeling stochastic Lie transport in fluid dynamics. SIAM J. Multiscale Model. Simul. 17(1), 192–232 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craik, A., Leibovich, S.: Rational model for Langmuir circulations. J. Fluid Mech. 73, 401–426 (1976)

    Article  ADS  MATH  Google Scholar 

  13. Crisan, D., Flandoli, F., Holm, D.D.: Solution properties of a 3D stochastic Euler fluid equation. J. Nonlinear Sci. 1–58 (2018)

  14. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  16. Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Physica D 240(14), 1123–1144 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dufée, B., Mémin, E., Crisan, D.: Stochastic parametrization: An alternative to inflation in ensemble kalman filters. Quat. J. R. Meteorol. Soc. 148(744) (2022)

  18. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Franzke, C.E., O’Kane, T.J., Berner, J., Williams, P.D., Lucarini, V.: Stochastic climate theory and modeling. Wiley Interdiscipl. Rev. Clim. Change 6(1), 63–78 (2015)

    Article  Google Scholar 

  20. Gottwald, G., Crommelin, D.T., Franzke, C.E.: Stochastic climate theory. In: Nonlinear and Stochastic Climate Dynamics, pp. 209–240. Cambridge University Press, Cambridge (2017)

  21. Guermond, J.L., Oden, J.T., Prudhomme, S.: Mathematical perspectives on large eddy simulation models for turbulent flows. J. Math. Fluid Mech. 6(2), 194–248 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Harcourt, R., D’Asaro, E.: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr. 38(7), 1542–1562 (2008)

    Article  ADS  Google Scholar 

  23. Hecht, M., Holm, D., Petersen, M., Wingate, B.: Implementation of the Lans-alpha turbulence model in a primitive equation ocean model. J. Comput. Phys. 27(11), 5691–5711 (2008)

    Article  ADS  MATH  Google Scholar 

  24. Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471(20140963) (2015)

  25. Kadri Harouna, S., Mémin, E.: Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling. Comput. Fluids 156, 456–469 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  27. Leith, C.: Stochastic backscatter in a subgrid-scale model: plane shear mixing layer. Phys. Fluids 2(3), 1521–1530 (1990)

    Article  Google Scholar 

  28. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  29. Majda, A., Timofeyev, I., Vanden Eijnden, E.: Models for Stochastic Climate Prediction. PNAS (1999)

  30. Mason, P.J., Thomson, D.J.: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 51–78 (1992)

    Article  ADS  MATH  Google Scholar 

  31. McWilliams, J., Sullivan, P., Moeng, C.-H.: Langmuir turbulence in the ocean. J. Fluid Mech. 334, 1–30 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Mémin, E.: Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn. 108(2), 119–146 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(4), 1250–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pinier, B., Mémin, E., Laizet, S., Lewandowski, R.: Stochastic flow approach to model the mean velocity profile of wall-bounded flows. Phys. Rev. E (in press) (2019)

  36. Resseguier, V., Li, L., Jouan, G., Derian, P., Mémin, E., Chapron, B.: New trends in ensemble forecast strategy: uncertainty quantification for coarse-grid computational fluid dynamics. Arch. Comput. Methods Eng. 1886–1784 (2020)

  37. Resseguier, V., Mémin, E., Chapron, B.: Geophysical flows under location uncertainty, Part I Random transport and general models. Geophys. Astrophys. Fluid Dyn. 111(3), 149–176 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Resseguier, V., Mémin, E., Chapron, B.: Geophysical flows under location uncertainty, Part II Quasi-geostrophy and efficient ensemble spreading. Geophys. Astrophys. Fluid Dyn. 111(3), 177–208 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Resseguier, V., Mémin, E., Chapron, B.: Geophysical flows under location uncertainty, Part III SQG and frontal dynamics under strong turbulence conditions. Geophys. Astrophys. Fluid Dyn. 111(3), 209–227 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. Resseguier, V., Mémin, E., Heitz, D., Chapron, B.: Stochastic modelling and diffusion modes for proper orthogonal decomposition models and small-scale flow analysis. J. Fluid Mech. 828, 29 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Resseguier, V., Picard, A., Mémin, E., Chapron, B.: Quantifying truncation-related uncertainties in unsteady fluid dynamics reduced order models. SIAM J. UQ (in press) (2021)

  42. Sagaut, P.: Large-Eddy Simulation for Incompressible Flow—An introduction, 3rd edn. Springer-Verlag, Scientic Computation Series (2005)

  43. Schmitt, François G.: About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9), 617–627 (2007)

    Article  ADS  MATH  Google Scholar 

  44. Shutts, G.: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 612, 3079–3012 (2005)

    Article  ADS  Google Scholar 

  45. Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983)

    MATH  Google Scholar 

  46. Tissot, G., Cavalieri, A., Mémin, E.: Stochastic linear modes in a turbulent channel flow. J. Fluid Mech. 912 (2021)

  47. Yang, Y., Mémin, E.: Estimation of physical parameters under location uncertainty using an ensemble\(^2\)-expectation-maximization algorithm. QJRMS 145(719), 418–433 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

The authors acknowledge the support of the ERC EU Project 856408-STUOD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Mémin.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest and no competing interest.

Additional information

Communicated by F. Flandoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Mathematical Tools

A Mathematical Tools

In this part, we recall some results used to prove theorem 3.1.

1.1 A.1 Compact Embedding Result

The following results are proved in Flandoli and Gatarek [18] and are variations of the compactness theorems of Lions [28], Ch. I, Sect. 5, and Temam [45], Sect. 13.3.

Lemma A.1

Let \(B_{0} \subset B \subset B_{1}\) be Banach spaces with compact embedding of \(B_0\) in B. Let \(p\in (1, \infty )\) and \(\alpha \in (0,1)\) be given. Then the embedding

$$\begin{aligned} L^{p}([0,T]; B_0) \cap W^{\alpha , p}([0,T ]; B_{1}) \hookrightarrow L^{p}([0,T]; B) \quad \text {is compact.} \end{aligned}$$

Lemma A.2

Let \(B_0 \subset B\) two Banach spaces with compact embedding. Let \(\alpha \in (0,1)\) and \(p>1\) be given such that \(\alpha p >1\), then the injection

$$\begin{aligned} W^{\alpha , p}([0,T ]; B_0) \hookrightarrow C^{0}([0,T]; B) \quad \text {is compact.} \end{aligned}$$

1.1.1 Stochastic Inequalities

Let \((\Omega ,{\mathcal {F}}, ({\mathcal {F}}_t)_t, {\mathbb {P}})\) be a stochastic basis. Let X be a separable Hilbert space. Let U be a second separable Hilbert space, and let W be a cylindrical Wiener process with values in U, defined on the stochastic basis. For any progressively measurable process \(\Phi \in L^{2}(\Omega \times [0, T];{\mathcal {L}}_{2}(U,X))\), we denote by \(I(\Phi )\) the Ito integral defined for \(t\in [0,T]\) as

$$\begin{aligned} I(\Phi )(t) = \int _{0}^{t} \Phi (s) \, \textrm{d} W_s. \end{aligned}$$

Lemma A.3

Let \(p\ge 2\) and \(\alpha < 1/2\) be given. Then, for any progressively measurable process \(\Phi \in L^{p}(\Omega \times [0, T];{\mathcal {L}}_{2}(U,X))\), we have

$$\begin{aligned} I(\Phi ) \in L^{p}(\Omega ; W^{\alpha ,p}([0,T] \,; \, X)) \end{aligned}$$

and there exists a constant \(C(p,\alpha ) > 0\) independent of \(\Phi \) such that

$$\begin{aligned} {\mathbb {E}} \left[ \, \Vert I(\Phi ) \, \Vert ^{p}_{W^{\alpha ,p}([0,T] \,; \, X)} \right] \; \le \; C(p, \alpha ) \; {\mathbb {E}} \left[ \, \int _{0}^{T} \Vert \Phi \Vert ^{p}_{{\mathcal {L}}_{2}(U,X)} \, \textrm{d}t \; \right] . \end{aligned}$$

This result is proved in Flandoli and Gatarek [18]. Most notably for the analysis here, the Burkholder–Davis–Gundy inequality holds and is recalled in the next proposition.

Proposition A.1

(Burkholder–Davis–Gundy inequality) For all integer \(r\ge 1\), we have

$$\begin{aligned} {\mathbb {E}} \left[ \, \sup _{t\in [0,T]} \left| \int _{0}^{t} \Phi (s) \, \textrm{d}W_s \, \right| ^{r} \; \right] \; \le \; C \, {\mathbb {E}} \left[ \,\left( \int _{0}^{T} \Vert \, \Phi (s)\, \Vert ^{2}_{{\mathcal {L}}_{2}(U,X)} \, \textrm{d}s \; \right) ^{r/2}\right] \end{aligned}$$

with a constant \(C>0\) depending only on r.

In Sect. 4.4, the following lemma of Debussche et al. [16] is used to facilitate the passage to the limit in the Galerkin scheme.

Lemma A.4

Consider a sequence of stochastic bases \(S_n = (\Omega ,{\mathcal {F}},({\mathcal {F}}_{t}^{n})_{t\in [0,T]},{\mathbb {P}},W^n)\) with \(W^n\) a cylindrical Wiener process (over U) with respect to \({\mathcal {F}}_{t}^{n}\). Assume that \((\psi ^n)_{n\ge 1}\) is a collection of X-valued \({\mathcal {F}}_{t}^{n}\) predictable processes such that \(\psi ^{n} \in L^{2}\left( [0,T],{\mathcal {L}}_2(U,X)\right) \) a.s. Finally consider \(S = (\Omega ,{\mathcal {F}}, {\mathbb {P}}, W)\) with W a cylindrical Wiener process (over U) and \(\psi \in L^{2}\left( [0,T],{\mathcal {L}}_2(U,X)\right) \), which is \(F_t\) predictable. If

$$\begin{aligned} W^{n} \underset{n\rightarrow +\infty }{\longrightarrow }\ W \qquad \text {in probability in } \; C^{0}\left( [0,T] ; U_0 \,\right) \\ \psi ^{n} \underset{n\rightarrow +\infty }{\longrightarrow }\ \psi \qquad \text {in probability in } \; L^{2}\left( [0,T] , {\mathcal {L}}_{2}(U , X)\,\right) \end{aligned}$$

then

$$\begin{aligned} \displaystyle \int _{0}^{t} \psi ^n \, \textrm{d}W^{n}_s \underset{n\rightarrow +\infty }{\longrightarrow }\ \int _{0}^{t} \psi \, \textrm{d}W_s \qquad \text {in probability in} \; L^{2} \left( [0,T]; X \right) \end{aligned}$$

1.2 A.2 Skohorod and Prokhorov Theorems

We recall here two classical theorems whose proofs can be found in Da Prato and Zabczyk [14].

Theorem A.1

(Prokhorov) A set \(\Lambda \) of probability measures on \((E,{\mathcal {B}})\) is relatively compact if and only if it is tight.

Theorem A.2

(Skorohod) Assuming there is a sequence \(\{\mu _n\}_{n\ge 1}\) converging weakly to a measure \(\mu \), then there exists a probability space \((\overline{\Omega },\overline{{\mathcal {F}}}, \overline{{\mathbb {P}}})\) and a sequence of X-valued random variables \((\overline{Y}_n)_{n\ge 0}\) (relative to this space) such that \(\overline{Y}_n\) converges almost surely to the random variable \(\overline{Y}\) and such that the laws of \(\overline{Y}_n\) and \(\overline{Y}\) are \(\mu _n\) and \(\mu \), respectively, i.e. \(\mu _n(E) = {\mathbb {P}}(\overline{Y}_n \in E)\), \(\mu (E) = {\mathbb {P}}(\overline{Y} \in E)\), for all \(E \in {\mathcal {B}}(X)\).

1.3 A.3 Deterministic Navier Stokes Equation

Let \(v_0\in H\). The standard deterministic Navier–Stokes equations for incompressible fluids reads

$$\begin{aligned} \left\{ \begin{array}{l} d_t v(t) \; + \; \dfrac{1}{\, R_e\, } \Delta v(t) \, \textrm{d}t \; + \; \bigl (v(t) \varvec{\cdot }\nabla \bigr ) v(t)\, \textrm{d}t \; = \; -\dfrac{1}{\rho } \; \nabla p {\textrm{d}}t, \\ \nabla \varvec{\cdot }v = 0, \\ v(0)=v_0. \end{array}\right. \end{aligned}$$
(89)

This equation can be written as the following pressure-free abstract problem using the Leray projection and the operator A and B defined Sect. 4.1:

$$\begin{aligned} \left\{ \begin{array}{l} d_t v(t) \; + \; Av(t) \, \textrm{d}t \; + B v(t)\, \textrm{d}t \; = \; 0, \\ v(0)=v_0. \end{array}\right. \end{aligned}$$
(90)

We say that v is a weak solution of (90) if \(v\in L^{2}([0,T], V) \cap {L^\infty }([0,T], H)\) and verifies for all \(z\in V\) and \(t\in [0,T]\) the following equality

$$\begin{aligned} \bigl ( v(t) \, , \, z\bigr )_{H} - \bigl ( v_0 \, , \, z\bigr )_{H} + \int _{0}^{t} \bigl ( A\,v(r)\,, \, z\bigr )_{H} \textrm{d}r \; + \; \int _{0}^{t} \left( B\,v(r)\, , \, z \right) _{H} \textrm{d}r \; = 0 . \end{aligned}$$

For \(d=2\) or 3, system (90) admits a weak solution. This solution is unique and belongs to C([0, T], H) when \(d=2\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debussche, A., Hug, B. & Mémin, E. A Consistent Stochastic Large-Scale Representation of the Navier–Stokes Equations. J. Math. Fluid Mech. 25, 19 (2023). https://doi.org/10.1007/s00021-023-00764-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00764-0

Navigation