Skip to main content
Log in

Dynamical system analysis of interacting variable modified Chaplygin gas model in FRW universe

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we have considered the interacting dynamical model taking the variable modified Chaplygin gas (VMCG) which plays as dark energy coupled to cold dark matter in the flat FRW universe. For the VMCG equation of state, we have chosen B(a) = B 0 a n. Since the nature of dark energy and dark matter is still unknown, it is possible to have an interaction between them and phenomenologically we choose the interaction term Q = 3cH ρ, where c is the coupling parameter. We have converted all the equations in the dynamical system of equations by considering the dimensionless parameters and seen the evolution of the corresponding autonomous system. The feasible critical point has been found and for the stability of the dynamical system about the critical point, we linearize the governing equation around the critical point. We found that there exists a stable scaling (attractor) solution at late times of the Universe and found some physical range of n and the interaction parameter c. We have shown that for our calculated physical range of the parameters, the Universe explores upto quintessence stage. The deceleration parameter, statefinder parameters, Hubble parameter and the scale factor have been calculated around the critical point. Finally, some consequences around the critical point, i.e., the distance measurement of the Universe like lookback time, luminosity distance, proper distance, angular diameter distance, comoving volume, distance modulus and probability of intersecting objects have been analyzed before and after the present age of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Bachall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, Science 284, 1481 (1999).

    Article  ADS  Google Scholar 

  2. S.J. Perlmutter et al., Bull. Am. Astron. Soc. 29, 1351 (1997).

    ADS  Google Scholar 

  3. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  4. A.G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  5. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003).

    Article  ADS  Google Scholar 

  6. S.W. Allen et al., Mon. Not. R. Astron. Soc. 353, 457 (2004).

    Article  ADS  Google Scholar 

  7. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. A 9, 373 (2000).

    ADS  Google Scholar 

  8. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Sen, JHEP 07, 065 (2002).

    Article  ADS  Google Scholar 

  11. J. Martin, M. Yamaguchi, Phys. Rev. D 77, 103508 (2008).

    Article  ADS  Google Scholar 

  12. A. Kamenshchik et al., Phys. Lett. B 511, 265 (2001).

    Article  ADS  MATH  Google Scholar 

  13. H. Wei, R.G. Cai, D.F. Zhang, Class. Quantum Grav. 22, 3189 (2005).

    Article  ADS  MATH  Google Scholar 

  14. C. Armendariz-Picon et al., Phys. Rev. D 63, 103510 (2001).

    Article  ADS  Google Scholar 

  15. H.Q. Lu, arXiv:hep-th/0409309.

  16. V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003).

    Article  ADS  Google Scholar 

  17. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003).

    Article  ADS  Google Scholar 

  18. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002).

    Article  ADS  Google Scholar 

  19. H.B. Benaoum, arXiv:hep-th/0205140.

  20. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003).

    Article  ADS  Google Scholar 

  22. Z.K. Guo, Y.Z. Zhang, Phys. Lett. B 645, 326 (2007).

    Article  ADS  Google Scholar 

  23. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Lett. B 575, 172 (2003).

    Article  ADS  Google Scholar 

  24. Z.K. Guo, Y.Z. Zhang, arXiv:astro-ph/0509790.

  25. G. Sethi, S.K. Singh, P. Kumar, D. Jain, A. Dev, Int. J. Mod. Phys. D 15, 1089 (2006).

    Article  ADS  MATH  Google Scholar 

  26. U. Debnath, Astrophys. Space Sci. 312, 295 (2007).

    Article  ADS  Google Scholar 

  27. M. Jamil, M.A. Rashid, Eur. Phys. J. C 58, 111 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Chattopadhyay, U. Debnath, Gravit. Cosmol. 14, 341 (2008).

    Article  ADS  MATH  Google Scholar 

  29. S. Chattopadhyay, U. Debnath, Astrophys. Space Sci. 319, 183 (2009).

    Article  ADS  Google Scholar 

  30. L. Xing, Y. Gui, L. Xu, J. Lu, Mod. Phys. Lett. A 24, 683 (2009).

    Article  ADS  MATH  Google Scholar 

  31. P. Wu, H. Yu, Class. Quantum Grav. 24, 4661 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. P. Wu, S.N. Zhang, JCAP 06, 007 (2008).

    Article  ADS  Google Scholar 

  33. H. Zhang, Z.-H. Zhu, Phys. Rev. D 73, 043518 (2006).

    Article  ADS  Google Scholar 

  34. M. Jamil, M.A. Rashid, Eur. Phys. J. C 60, 141 (2009).

    Article  ADS  Google Scholar 

  35. M. Jamil, Int. J. Theor. Phys. 49, 62 (2010).

    Article  MATH  Google Scholar 

  36. M. Jamil, U. Debnath, Astrophys. Space Sci. 333, 3 (2011).

    Article  ADS  Google Scholar 

  37. M.S. Berger, H. Shojaei, Phys. Rev. D 74, 043530 (2006).

    Article  ADS  Google Scholar 

  38. J.S. Alcaniz, J.A.S. Lima, Phys. Rev. D 72, 063516 (2005).

    Article  ADS  Google Scholar 

  39. C. Feng et al., Phys. Lett. B 665, 111 (2008).

    Article  ADS  Google Scholar 

  40. M. Jamil, U. Debnath, Int. J. Theor. Phys. 50, 1602 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  41. A.I. Arbab, arXiv:astro-ph/9810239.

  42. D.W. Hogg, arXiv:astro-ph/9905116v4.

  43. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993).

  44. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990).

  45. S. Weinberg, Gravitation and Cosmolgy: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, New York, 1972).

  46. D.W. Weedman, Quasar Astronomy (Cambridge University, Cambridge, 1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bhadra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadra, J., Debnath, U. Dynamical system analysis of interacting variable modified Chaplygin gas model in FRW universe. Eur. Phys. J. Plus 127, 30 (2012). https://doi.org/10.1140/epjp/i2012-12030-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12030-2

Keywords

Navigation