Skip to main content
Log in

RETRACTED ARTICLE: Crystal’s anisotropic properties and tensor representation: a discussion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

This article was retracted on 27 March 2013

Abstract

For most applications, crystals need a careful selection to process an appropriate symmetry for a particular application. A crystal is innately symmetrical; hence it presents the same appearance from a number of different directions. Some of the physical properties of crystals which exhibit dependence on symmetry elements are presented. A method of using the inherent symmetry in order to simplify the formulation of the physical properties is needed. The use of tensors is one such tool. The authors review what tensors of different ranks are, and show how such tensors can be used to describe the directional variation of the physical properties within crystals. These arise when a tensor relates a vector to a second-rank tensor. Properties that involve third-rank tensors include the piezoelectric effect. However, to exhibit the reduction of the number of tensor components further, consider the fourth-rank tensors. Both stress and strain can be represented by second-rank tensors, the modulus can be represented by a fourth-rank tensor. Stress is the force acting in any direction divided by the area. The fourth-rank elasticity tensor of an anisotropic and linear elastic material of the material is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bhagavantam, Crystal Symmetry and Physical Properties (Academic Press, London, 1966)

  2. S. Bhagavantam, T. Venkatarayudu, Theory of Groups and Its Application to Physical Problems (Academic Press, New York, 1969)

  3. P. Herzig, R. Dirl, Tensor representations, in Encyclopedia of Spectroscopy and Spectrometry, edited by J.C. Lindon, G.E. Tranter, J.L. Holmes (Academic Press, London, 2000) pp. 2342--2353

  4. R.R. Birss, H.-D. Butzal, J. Magn. & Magn. Mater. 28, 326 (1982)

    Article  ADS  Google Scholar 

  5. D.J. Della-Rose, J. Atmos. Solar-Terr. Phys. 67, 337 (2005)

    Article  ADS  Google Scholar 

  6. M. Ramakrishna Murthy, E. Venkateshwar Rao, Indian J. Phys. 84, 193 (2010)

    Article  ADS  Google Scholar 

  7. T.L. Martin, Jr., W.F. Leonard, Electrons and Crystals (Brooks/Cole, California, 1970)

  8. W.P. Mason, Crystal Physics of Interaction Processes (Academic Press, New York, 1966)

  9. J.F. Nye, Physical Properties of Crystals (Oxford University Press, New York, 1964)

  10. M.N. Saha, B.N. Srivastava, A Treatise on Heat (Indian Press, Allahabad, 1965)

  11. W.A. Wooster, A Text Book on Crystal Physics (Cambridge University Press, 1949)

  12. D.R. Lovett, Tensor Properties of Crystals (IOP Publishing, Bristol, UK, 1989, 1994)

  13. A. Danilewsky, Cryst. Res. Technol. 37, 142 (2002)

    Article  Google Scholar 

  14. W.C. Hassenpflug, Comput. Math. Appl. 29, 1 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.C. Cowin, Mech. Mater. 4, 137 (1985)

    Article  ADS  Google Scholar 

  16. R.M. Martin, Phys. Rev. B 5, 1607 (1972)

    Article  ADS  Google Scholar 

  17. L. Wheeler, Int. J. Eng. Sci. 49, 727 (2011)

    Article  MATH  Google Scholar 

  18. I. Sevostianov, J. Mech. Phys. Solids 55, 2181 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. D. Royer, E. Dieulesaint, in Elastic Waves in Solids I (Springer, Berlin, 1999)

  20. C.Z. Tan, H. Li, L. Chen, Appl. Phys. B 86, 129 (2007)

    Article  ADS  Google Scholar 

  21. W.G. Cady, in Piezoelectricity I (Dover Publishing Inc., New York, 1964)

  22. C.Z. Tan, Appl. Phys. B 82, 633 (2006)

    Article  ADS  Google Scholar 

  23. D. Damjanovic, Piezoelectricity, in Encyclopedia of Condensed Matter Physics, edited by G. Bassani, G. Liedl, P. Wyder (Elsevier, 2005) pp. 300--309

  24. P. Vannucci, Int. J. Solids Struct. 44, 7803 (2007)

    Article  MATH  Google Scholar 

  25. K.Y.K. Lee, M.K. Nyein, D.F. Moore, J.D. Joannopoulos, S. Socrate, T. Imholt, R. Radovitzky, S.G. Johnson, NeuroImage 54, S30 (2011) International Brain Mapping and Intraoperative Surgical Planning Society (IBMISPS) 2009 Supplement. DOI:10.1016/j.neuroimage.2010.05.042

    Article  Google Scholar 

  26. R.W. Munn, J. Chem. Phys. 132, 104512 (2010)

    Article  ADS  Google Scholar 

  27. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Pramana J. Phys. 69, 491 (2007)

    Article  ADS  Google Scholar 

  28. F. Mauri, B.G. Pfrommer, S.G. Louie, Phys. Rev. Lett. 77, 5300 (1996)

    Article  ADS  Google Scholar 

  29. I. Souza, J. Íñiguez, Phys. Rev. Lett. 89, 117602 (2002)

    Article  ADS  Google Scholar 

  30. P. Umari, A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002)

    Article  ADS  Google Scholar 

  31. Z.C. Tu, X. Hu, Phys. Rev. B 74, 035434 (2006)

    Article  ADS  Google Scholar 

  32. M. Catti, Y. Noel, R. Dovesi, J. Phys. Chem. Solids 64, 2183 (2003)

    Article  ADS  Google Scholar 

  33. R. Chowdhury, S. Adhikari, F. Scarpa, Physica E 42, 2036 (2010)

    Article  ADS  Google Scholar 

  34. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  ADS  Google Scholar 

  35. K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Acta Mater. 59, 3770 (2011)

    Article  Google Scholar 

  36. M. Flionenko-Borodich, Theory of Elasticity (Peace Publishers, Moscow, 1963) translated from Russian by Marina Konyaeva

  37. J. Guilleminot, A. Noshadravan, C. Soize, R.G. Ghanem, Comput. Methods Appl. Mech. Eng. 200, 1637 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Lazar, H.O.K. Kirchner, Int. J. Solids Struct. 44, 2477 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Masson, Int. J. Solids Struct. 45, 757 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Talebian.

Additional information

It has come to the attention of the European Physical Journal Plus that this article should not have been published because it repeats work already published in: (a) Chapter 7 of the textbook "Crystallography Applied To Solid State Physics" by A. R. Verma and O. N. Srivastava (New Age International, 1991); (b) Encyclopedia of Condensed Matter Physics, edited by G. Bassani, G. Liedl, P. Wyder (Elsevier, 2005) pp. 300-309; (c) E. Fjær, R.M. Holt, A. M. Raaen, P. Risnes and P. Horsrud, "Petroleum Related Rock Mechanics", Second Edition (Elsevier, 2008). Consequently, this paper has been retracted by the European Physical Journal Plus and should not be cited or referred to in the future.

A retraction note to this article can be found online at http://dx.doi.org/10.1140/epjp/i2013-13037-9.

About this article

Cite this article

Talebian, E., Talebian, M. RETRACTED ARTICLE: Crystal’s anisotropic properties and tensor representation: a discussion. Eur. Phys. J. Plus 126, 128 (2011). https://doi.org/10.1140/epjp/i2011-11128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11128-3

Keywords

Navigation