Skip to main content
Log in

Interpretation of elements of the logarithm of a rotation matrix as rotation components around coordinate axes of a reference frame

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Crystal orientation is an important factor when we consider microstructures in materials. With respect to a reference frame, certain crystal orientation can be expressed by a rotation angle \(\Phi \) around a unit vector \(\mathbf{n}=\left( {h,\hbox { }k,\hbox { }l} \right) \). Partitioning of \(\Phi \) into rotation components around coordinate axes of the reference frame is discussed. For a rotation matrix \(\mathbf{R}\) corresponding to the axis/angle pair, its logarithm \(\ln \mathbf{R}\) is a skew symmetric tensor with three independent elements, \(h\Phi , k\Phi \) and \(l\Phi \). It is shown that these elements can be interpreted to be sums of the divided rotation angles around the coordinate axes. The elements \(h\Phi , k\Phi \) and \(l\Phi \) of \(\ln \mathbf{R}\) called the log angles can be used as the rotation components to evaluate crystal orientation in materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Hansen, Metall. Mater. Trans. A 32, 2917–2935 (2001)

    Article  Google Scholar 

  2. W. Pantleon, Acta Mater. 46, 451–456 (1998)

    Article  CAS  Google Scholar 

  3. W. Pantleon, Mater. Sci. Eng. A 319, 211–215 (2001)

    Article  Google Scholar 

  4. M. Ferry, F.J. Humphreys, Mater. Sci. Eng. A 435, 447–452 (2006)

    Article  Google Scholar 

  5. A. Yoshida, Y. Miyajima, S. Onaka, J. Jpn. Inst. Met. 77, 435–439 (2013)

    Article  CAS  Google Scholar 

  6. A. Yoshida, Y. Miyajima, S. Onaka, J. Mater. Sci. 49, 2013–2017 (2014)

    Article  CAS  Google Scholar 

  7. J.A. Wert, Acta Mater. 50, 3125–3139 (2002)

    Article  CAS  Google Scholar 

  8. Q. Liu, C. Maurice, J. Driver, N. Hansen, Metall. Mater. Trans. A 29, 2333–2344 (1998)

    Article  Google Scholar 

  9. Q. Liu, J. Wert, N. Hansen, Acta Mater. 48, 4267–4279 (2000)

    Article  CAS  Google Scholar 

  10. H. Grimmer, Acta Cryst. A 40, 108–112 (1984)

    Article  Google Scholar 

  11. E. Pina, Eur. J. Phys. 32, 1171–1178 (2011)

    Article  Google Scholar 

  12. K. Hayashi, M. Osada, Y. Kurosu, Y. Miyajima, S. Onaka, Mater. Trans. 57, 507–512 (2016)

    Article  Google Scholar 

  13. S. Onaka, T. Hirose, H. Kato, S. Hashimoto, J. Jpn. Inst. Met. 61, 574–579 (1997)

    CAS  Google Scholar 

  14. U.F. Kocks, C.N. Tomé, H.-R. Wenk, Texture and Anisotropy Preferred Orientations in Polycrystals and their Effect on Materials Properties (Cambridge University Press, Cambridge, 2000), pp. 57–77

    Google Scholar 

  15. D.H. Sattinger, O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics (Springer, New York, 1986), pp. 32–38

  16. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Second Edition (Springer, New York, 1999), pp. 283–308

    Book  Google Scholar 

  17. B.C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Springer, New York, 2003), pp. 27–62

  18. P. Neumann, Textures Microstruct. 14, 53–58 (1991)

    Article  Google Scholar 

  19. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982), pp. 703–713

  20. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988), pp. 21–35

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grand-in-Aid for Scientific Research C (16K06703) through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Onaka.

Appendices

Appendix 1

The rotation matrix \(\mathbf{R}\) corresponding to the model shown in Fig. 1 is written by the successive rotations as

$$\begin{aligned} \mathbf{R}=\mathbf{MR}_x \left( \Phi \right) { }^t\mathbf{M}, \end{aligned}$$
(15)

where

$$\begin{aligned} \mathbf{R}_x \left( \Phi \right) =\left( {{\begin{array}{lll} 1&{}\quad 0&{} \quad 0 \\ 0&{}\quad {\cos \Phi }&{}\quad {-\sin \Phi } \\ 0&{} \quad {\sin \Phi }&{}\quad {\cos \Phi } \\ \end{array} }} \right) , \end{aligned}$$
(16)

\(\mathbf{M}\) is the rotation matrix giving the transformation

$$\begin{aligned} \left( {{\begin{array}{l} h \\ k \\ l \\ \end{array} }} \right) =\mathbf{M}\left( {{\begin{array}{l} 1 \\ 0 \\ 0 \\ \end{array} }} \right) , \end{aligned}$$
(17)

and \(^t\mathbf{M}\) is the transpose of \(\mathbf{M}\). Since \(\mathbf{M}\) is the orthogonal matrix with determinant 1, the elements of \(\mathbf{R}\) given by (15) can be written as a function of hkl and \(\Phi \). Calculating the right-hand-side of (15) from (16) and (17), we find it is the same with the right-hand-side of (1).

Appendix 2

The definition of Rodrigues’ vector \(\mathbf{v}\) for the axis/angle pair \(\mathbf{n}=\left( {h,\hbox { }k,\hbox { }l} \right) /\Phi \) is [10, 11, 18]

$$\begin{aligned} \mathbf{v}=\tan \left( {\Phi /2} \right) \mathbf{n}=\tan \left( {\Phi /2} \right) \left( {{\begin{array}{l} h \\ k \\ l \\ \end{array} }} \right) . \end{aligned}$$

Using Rodrigues’ vector \(\mathbf{v}\), the rotation matrix \(\mathbf{R}\) corresponding to this axis/angle pair is given by [11]

$$\begin{aligned} \mathbf{R}=\frac{1}{1+\,^t\mathbf{v v}}\left[ {\left( {1-\,^t\mathbf{v v}} \right) \mathbf{E}+2\mathbf{v}\, ^t\mathbf{v}+2{\hat{\mathbf{v}}}} \right] , \end{aligned}$$

where \(^t\mathbf{v}\) is the transpose of \(\mathbf{v}\) and \({\hat{\mathbf{v}}}\) the hat map of \(\mathbf{v}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onaka, S., Hayashi, K. Interpretation of elements of the logarithm of a rotation matrix as rotation components around coordinate axes of a reference frame. J Math Chem 54, 1686–1695 (2016). https://doi.org/10.1007/s10910-016-0644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0644-5

Keywords

Navigation