Skip to main content
Log in

Analogue gravity and the Hawking effect: historical perspective and literature review

  • Regular Article
  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Reasoning by analogies permeates theoretical developments in physics and astrophysics, motivated by the unreachable nature of many phenomena at play. For example, analogies have been used to understand black hole physics, leading to the development of a thermodynamic theory for these objects and the discovery of the Hawking effect. The latter, which results from quantum field theory on black hole space-times, changed the way physicists approached this subject: what had started as a mere aid to understanding becomes a possible source of evidence via the research programme of “analogue gravity” that builds on analogue models for field effects. Some of these analogue models may and can be realised in the laboratory, allowing experimental tests of field effects. Here, we present a historical perspective on the connection between the Hawking effect and analogue models. We also present a literature review of current research, bringing history and contemporary physics together. We argue that the history of analogue gravity and the Hawking effect is divided into three distinct phases based on how and why analogue models have been used to investigate fields in the vicinity of black holes. Furthermore, we find that modern research signals a transition to a new phase, where the impetus for the use of analogue models has surpassed the problem they were originally designed to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For more on the use of visualisation as tools for understanding, we refer to [22].

  2. It is important to underline that this information is given through recollections. In the paper in which Unruh recalled this episode [23], his account of the analogy is more refined and poetic in a way it could not have been proposed in 1972. For example, instead of the waterfall, he used the fantasy world of Rimfall, created by author Terry Pratchett in his fantasy series Discworld. The first book in the Discworld series was published in 1983, after Unruh’s 1981 paper proposing the formal analogy. Nevertheless, it is plausible and likely that a simpler version had been proposed earlier, around the year Unruh recalled.

  3. Private communication.

  4. For a deeper analysis of the historical events that led to the development of the thermodynamical theory of black holes, see [2].

  5. A proof of this law was provided by Werner Israel in 1986 [28], over a decade after Badeen, Carter, and Hawking’s formulation.

  6. It remains unattainable, for that matter.

  7. We chose to use the notation Unruh used in his 1995 paper [44] instead of the original for simplicity, since our goal with this exposition is a better understanding of the analogy.

  8. An updated version of the proposal exists in [46].

  9. Jacobson’s original spelling was “fluid-flow analog”. In the general literature, both the British “analogue” and US “analog” spellings are used.

  10. A typical example of linearised excitations are Bogoliubov excitations in quantum fluids [65, 67].

  11. Depending on the dispersion of excitations in the fluid, negative-norm modes may come from the outside region (as in water waves [44]) or the inside region (as in quantum fluids [34, 80, 81]). This dispersion-induced kinematic feature of fluid-based analogues seems not to affect the Hawking effect [44, 68, 80].

  12. Naturally, this picture also works for vacuum fluctuations of the electromagnetic field inside the fibre [83, p. 14].

  13. There are other modes because of dispersion, but they do not play a significant role in the present discussion (for more on this issue, see, for example, [68]).

  14. Nowadays, it is well established that dispersion in all systems modifies the Hawking spectrum, which is not thermal [86].

  15. Google Scholar returns over 1500 results for the search “analogue gravity” between 1 January 2008 and 21 September 2022.

  16. Much like the early work of White [118] and Anderson and Spiegel [119].

  17. These early proposals were quickly followed by a number of more realistic calculations, notably in atomic BECs proposing operational means to measure effects like inflation and cosmological particle pair creation, see, for example, [122, 123].

  18. More on these studies may be found in the references listed in [129].

  19. The title of that paper is a misnomer, and the observed wave effect is rotational superradiance [19, 132], which is different from the Penrose effect [133] (the reflection of particles on the ergosurface that is accompanied by an increase in their momentum associated with a decrease in the momentum of the rotating black hole [134]).

  20. Similar methods to [150] applied in Josephson metamaterials allow to measure the dynamical Casimir effect, as reported in 2011 [151].

References

  1. Greenstein, J.L., Schmidt, M.: The Quasi-Stellar Radio Sources 3C 48 and 3C 273. Astrophysical Journal 140, 1 (1964). https://doi.org/10.1086/147889

    Article  ADS  Google Scholar 

  2. Almeida, C.R.: The thermodynamics of black holes: from Penrose process to Hawking radiation. The European Physical Journal H 46(1), 20 (2021). https://doi.org/10.1140/epjh/s13129-021-00022-9

    Article  ADS  PubMed Central  Google Scholar 

  3. Hawking, S.W.: Black hole explosions? Nature 248(5443), 30–31 (1974). https://doi.org/10.1038/248030a0

    Article  ADS  Google Scholar 

  4. Unruh, W.G.: Experimental Black-Hole Evaporation? Physical Review Letters 46, 1351–1353 (1981). https://doi.org/10.1103/PhysRevLett.46.1351

    Article  ADS  Google Scholar 

  5. Dardashti, R., Hartmann, S., Thébault, K., Winsberg, E.: Hawking radiation and analogue experiments: A Bayesian analysis. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 1355219818301035 (2019). https://doi.org/10.1016/j.shpsb.2019.04.004

  6. Crowther, K., Linnemann, N., Wuthrich, C.: What we cannot learn from analogue experiments. arXiv:1811.03859 [gr-qc, physics:physics] (2018)

  7. Evans, P.W., Thébault, K.P.Y.: On the limits of experimental knowledge. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, 20190235 (2020). https://doi.org/10.1098/rsta.2019.0235

    Article  ADS  CAS  Google Scholar 

  8. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Reviews in Relativity (12) (2005). https://doi.org/10.12942/lrr-2005-12

  9. Field, G.E.: The latest frontier in analogue gravity: New roles for analogue experiments (2021). http://philsci-archive.pitt.edu/20365/

  10. Chang, H.: In: Mauskopf, S., Schmaltz, T. (eds.) Beyond Case-Studies: History as Philosophy, pp. 109–124. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-1745-9_8

  11. Scholl, R., Räz, T.: In: Sauer, T., Scholl, R. (eds.) Towards a Methodology for Integrated History and Philosophy of Science, pp. 69–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30229-4_5

  12. Blum, A.S., Lalli, R., Renn, J.: The renaissance of General Relativity: How and why it happened. Annalen der Physik 528, 344–349 (2016). https://doi.org/10.1002/andp.201600105

    Article  ADS  MathSciNet  Google Scholar 

  13. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963). https://doi.org/10.1103/PhysRevLett.11.237

    Article  ADS  MathSciNet  Google Scholar 

  14. Newman, E.T., Janis, A.I.: Note on the Kerr Spinning-Particle Metric. Journal of Mathematical Physics 6(6), 915–917 (1965). https://doi.org/10.1063/1.1704350

    Article  ADS  MathSciNet  Google Scholar 

  15. Zel’dovich, Y.B.: The Fate of a Star and the Evolution of Gravitational Energy Upon Accretion. Soviet Physics Doklady 9, 195 (1964)

    ADS  Google Scholar 

  16. Hawking, S.W., Penrose, R.: The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A 314, 529–548 (1970). https://doi.org/10.1098/rspa.1970.0021

    Article  ADS  MathSciNet  Google Scholar 

  17. Penrose, R., Floyd, R.M.: Extraction of Rotational Energy from a Black Hole. Nature Physical Science 229, 177–179 (1971). https://doi.org/10.1038/physci229177a0

    Article  ADS  Google Scholar 

  18. Herdeiro, C., Lemos, J.: The black hole fifty years after: Genesis of the name. Gazeta de Física 41, 2–7 (2018)

    Google Scholar 

  19. Zel’Dovich, Y.B.: Generation of Waves by a Rotating Body. Soviet Journal of Experimental and Theoretical Physics Letters 14, 180 (1971)

    ADS  Google Scholar 

  20. Zel’dovich, Y.B.: Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body. Soviet Physics JETP 35(6) (1972)

  21. Starobinskii, A.A.: Amplification of waves during reflection from a rotating “black hole”. Soviet Physics JETP 37, 28–32 (1973)

    ADS  Google Scholar 

  22. de Regt, H.W.: Visualization as a Tool for Understanding. Perspectives on Science 22, 377–396 (2014). https://doi.org/10.1162/POSC_a_00139

    Article  Google Scholar 

  23. Unruh, W.G.: In: Unruh, W.G., Schützhold, R. (eds.) The Analogue Between Rimfall and Black Holes, vol. 718, pp. 1–4. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/3-540-70859-6_1

  24. Visser, M.: Acoustic black holes: horizons, ergospheres and Hawking radiation. Classical and Quantum Gravity 15(6), 1767 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Bekenstein, J.D.: Baryon Number, Entropy, and Black Hole Physics. PhD thesis, Princeton University (January 1972)

  26. Bekenstein, J.D.: Black Holes and Entropy. Physical Review D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  Google Scholar 

  27. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Communications in Mathematical Physics 31(2), 161–170 (1973). https://doi.org/10.1007/BF01645742

    Article  ADS  MathSciNet  Google Scholar 

  28. Werner, I.: Third law of black holes dynamics: A formulation and proof. Physical Review Letters 57, 397–399 (1986)

    Article  MathSciNet  Google Scholar 

  29. Jacobson, T.: Black-hole evaporation and ultrashort distances. Physical Review D 44(6) (1991). https://doi.org/10.1103/PhysRevD.44.1731

  30. Unruh, W.G.: Notes on black-hole evaporation. Physical Review D 14(4), 870–892 (1976). https://doi.org/10.1103/PhysRevD.14.870

    Article  ADS  CAS  Google Scholar 

  31. Rivat, S.: Effective theories and infinite idealizations: a challenge for scientific realism. Synthese 198, 12107–12136 (2021). https://doi.org/10.1007/s11229-020-02852-4

    Article  MathSciNet  Google Scholar 

  32. Hawking, S.W.: Particle creation by black holes. Communications in Mathematical Physics 43 (1975). https://doi.org/10.1007/BF02345020

  33. Unruh, W.G.: Origin of the particles in black-hole evaporation. Physical Review D 15(2), 365–369 (1977). https://doi.org/10.1103/PhysRevD.15.365

    Article  ADS  Google Scholar 

  34. Corley, S., Jacobson, T.: Hawking spectrum and high frequency dispersion. Physical Review D 54(2), 1568–1586 (1996). https://doi.org/10.1103/PhysRevD.54.1568

    Article  ADS  CAS  Google Scholar 

  35. Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Energy-momentum tensor near an evaporating black hole. Physical Review D 13(10), 2720–2723 (1976). https://doi.org/10.1103/PhysRevD.13.2720

    Article  ADS  Google Scholar 

  36. Davies, P.C.W.: Thermodynamics of black holes. Reports on Progress in Physics 41(8), 1313–1355 (1978). https://doi.org/10.1088/0034-4885/41/8/004

    Article  ADS  Google Scholar 

  37. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space, Repr edn. Cambridge monographs on mathematical physics. Cambridge Univ. Press, Cambridge (1994)

    Google Scholar 

  38. Skenderis, K., Taylor, M.: The fuzzball proposal for black holes. Physics Reports 467(4), 117–171 (2008). https://doi.org/10.1016/j.physrep.2008.08.001

    Article  ADS  MathSciNet  Google Scholar 

  39. Ashtekar, A.: Black hole evaporation: A perspective from loop quantum gravity. Universe 6(2) (2020). https://doi.org/10.3390/universe6020021

  40. Raju, S.: Lessons from the information paradox. Physics Reports 943, 1–80 (2022). https://doi.org/10.1016/j.physrep.2021.10.001. Lessons from the information paradox

  41. Fulling, S.A.: Nonuniqueness of canonical field quantization in riemannian space-time. Phys. Rev. D 7, 2850–2862 (1973). https://doi.org/10.1103/PhysRevD.7.2850

    Article  ADS  Google Scholar 

  42. Davies, P.C.W., Taylor, J.G.: Do black holes really explode? Nature 250, 37–38 (1974). https://doi.org/10.1038/250037a0

    Article  ADS  Google Scholar 

  43. Davies, P.C.W.: Scalar production in schwarzschild and rindler metrics. Journal of Physics A: Mathematical and General 8, 609–616 (1975). https://doi.org/10.1088/0305-4470/8/4/022

    Article  ADS  Google Scholar 

  44. Unruh, W.G.: Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Physical Review D 51(6), 2827–2838 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  45. Roşu, H.: Towards measuring hawking-like effects in the laboratory. i. Technical report, Central Institute of Physics Astronomy & Space Research Center, Bucharest, Romania (April 1989)

  46. Roşu, H.C.: On the estimates to measure Hawking Effect and Unruh Effect in the laboratory. International Journal of Modern Physics D 03, 545–548 (1994). https://doi.org/10.1142/S0218271894000691

    Article  ADS  Google Scholar 

  47. Bell, J.S., Leinaas, J.M.: Electrons as accelerated thermometers. Nuclear Physics B 212(1), 131–150 (1983). https://doi.org/10.1016/0550-3213(83)90601-6

    Article  ADS  Google Scholar 

  48. Nugaev, R.M.: Particle Creation by a Black Hole as a Consequence of the Casimir Effect. Commun. Math. Phys. 111, 579–592 (1987). https://doi.org/10.1007/BF01219075

    Article  ADS  MathSciNet  Google Scholar 

  49. Rogers, J.: Detector for the temperaturelike effect of acceleration. Phys. Rev. Lett. 61, 2113–2116 (1988). https://doi.org/10.1103/PhysRevLett.61.2113

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Eltsov, V.B., Krusius, M., Volovik, G.E.: Vortex formation and dynamics in superfluid 3he and analogies in quantum field theory (1998). https://doi.org/10.48550/ARXIV.COND-MAT/9809125

  51. Baldovin, F., Novello, M., Bergliaffa, S.E.P., Salim, J.M.: A non-gravitational wormhole. Classical and Quantum Gravity 17(16), 3265–3275 (2000). https://doi.org/10.1088/0264-9381/17/16/311

    Article  ADS  MathSciNet  Google Scholar 

  52. Barceló, C., Liberati, S., Visser, M.: Analogue gravity from field theory normal modes? Classical and Quantum Gravity 18(17), 3595–3610 (2001). https://doi.org/10.1088/0264-9381/18/17/313

    Article  ADS  MathSciNet  Google Scholar 

  53. Novello, M., Matt, V., E, V.G. (eds.): Artificial Black Holes. World Scientific, New Jersey, NJ (2002)

  54. Kopnin, N.B., Volovik, G.E.: Critical velocity and event horizon in pair-correlated systems with “relativistic” fermionic quasiparticles. Journal of Experimental and Theoretical Physics Letters 67(2), 140–145 (1998). https://doi.org/10.1134/1.567637

    Article  ADS  Google Scholar 

  55. Jacobson, T.A., Volovik, G.E.: Effective spacetime and Hawking radiation from a moving domain wall in a thin film of 3He-A. Journal of Experimental and Theoretical Physics Letters 68(11), 874–880 (1998). https://doi.org/10.1134/1.567808

    Article  ADS  Google Scholar 

  56. Garay, L.J., Anglin, J.R., Cirac, J.I., Zoller, P.: Sonic analog of gravitational black holes in bose-einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000). https://doi.org/10.1103/PhysRevLett.85.4643

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Schützhold, R., Unruh, W.G.: Gravity wave analogues of black holes. Phys. Rev. D 66, 044019 (2002). https://doi.org/10.1103/PhysRevD.66.044019

    Article  ADS  MathSciNet  CAS  Google Scholar 

  58. Leonhardt, U., Piwnicki, P.: Optics of nonuniformly moving media. Physical Review A 60(6), 4301–4312 (1999). https://doi.org/10.1103/PhysRevA.60.4301

    Article  ADS  CAS  Google Scholar 

  59. Schützhold, R., Plunien, G., Soff, G.: Dielectric Black Hole Analogs. Physical Review Letters 88(6), 061101 (2002). https://doi.org/10.1103/PhysRevLett.88.061101

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Leonhardt, U., Piwnicki, P.: Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity. Physical Review Letters 84(5), 822–825 (2000). https://doi.org/10.1103/PhysRevLett.84.822

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Unruh, W.G., Schützhold, R.: On slow light as a black hole analogue. Phys. Rev. D 68, 024008 (2003). https://doi.org/10.1103/PhysRevD.68.024008

    Article  ADS  MathSciNet  CAS  Google Scholar 

  62. Brevik, I., Halnes, G.: Light rays at optical black holes in moving media. Phys. Rev. D 65, 024005 (2001). https://doi.org/10.1103/PhysRevD.65.024005

    Article  ADS  CAS  Google Scholar 

  63. Schützhold, R., Unruh, W.G.: Hawking Radiation in an Electromagnetic Waveguide? Physical Review Letters 95(3), 031301 (2005). https://doi.org/10.1103/PhysRevLett.95.031301

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Unruh, W., Schützhold, R.: Universality of the Hawking effect. Physical Review D 71(2) (2005). https://doi.org/10.1103/PhysRevD.71.024028

  65. Bogoljubov, N.N.: On a New Method in the Theory of Superconductivity. Journal of Experimental and Theoretical Physics 34(1) (1958)

  66. Macher, J., Parentani, R.: Black/white hole radiation from dispersive theories. Physical Review D 79(12), 124008 (2009). https://doi.org/10.1103/PhysRevD.79.124008

    Article  ADS  CAS  Google Scholar 

  67. Recati, A., Pavloff, N., Carusotto, I.: Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates. Physical Review A 80, 043603 (2009). https://doi.org/10.1103/PhysRevA.80.043603

    Article  ADS  CAS  Google Scholar 

  68. Jacquet, M., Koenig, F.: The influence of spacetime curvature on quantum emission in optical analogues to gravity. SciPost Physics Core 3(1), 005 (2020). https://doi.org/10.21468/SciPostPhysCore.3.1.005

  69. Parentani, R.: What did we learn from studying acoustic black holes? International Journal of Modern Physics A 17(20), 2721–2725 (2002). https://doi.org/10.1142/S0217751X02011679

    Article  ADS  MathSciNet  Google Scholar 

  70. Visser, M., Barceló, C., Liberati, S.: Analogue Models of and for Gravity. General Relativity and Gravitation 34(10), 1719–1734 (2002). https://doi.org/10.1023/A:1020180409214

    Article  MathSciNet  Google Scholar 

  71. Jacobson, T.: Introduction to quantum fields in curved spacetime and the hawking effect (2003). https://doi.org/10.48550/ARXIV.GR-QC/0308048

  72. Volovik, G.E.: What Can the Quantum Liquid Say on the Brane Black Hole, the Entropy of an Extremal Black Hole, and the Vacuum Energy? Foundations of Physics 33(2), 349–368 (2003). https://doi.org/10.1023/A:1023762013553

    Article  ADS  MathSciNet  Google Scholar 

  73. What Can We Learn from Analogue Experiments? In: Dardashti, R., Dawid, R., Thébault, K. (eds.) Why Trust a Theory?, 1st edn., pp. 184–201. Cambridge University Press (2019). https://doi.org/10.1017/9781108671224.014

  74. Jacquet, M.J., Weinfurtner, S., König, F.: The next generation of analogue gravity experiments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378(2177), 20190239 (2020). https://doi.org/10.1098/rsta.2019.0239

  75. Agullo, I., Brady, A.J., Kranas, D.: Quantum Aspects of Stimulated Hawking Radiation in an Optical Analog White-Black Hole Pair. Physical Review Letters 128, 091301 (2022). https://doi.org/10.1103/PhysRevLett.128.091301

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Jacquet, M.J.: Negative Frequency at the Horizon: Theoretical Study and Experimental Realisation of Analogue Gravity Physics in Dispersive Optical Media. Springer Theses. Springer, Cham (2018)

  77. Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., König, F., Leonhardt, U.: Fiber-Optical Analog of the Event Horizon. Science 319, 1367–1370 (2008). https://doi.org/10.1126/science.1153625

  78. Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T.G., Leonhardt, U.: Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New Journal of Physics 10(5), 053015 (2008). https://doi.org/10.1088/1367-2630/10/5/053015

    Article  ADS  Google Scholar 

  79. Schützhold, R., Unruh, W.G.: Gravity wave analogues of black holes. Physical Review D 66(4), 044019 (2002). https://doi.org/10.1103/PhysRevD.66.044019

    Article  ADS  MathSciNet  CAS  Google Scholar 

  80. Brout, R., Massar, S., Parentani, R., Spindel, P.: Hawking radiation without trans-Planckian frequencies. Physical Review D 52(8), 4559–4568 (1995). https://doi.org/10.1103/PhysRevD.52.4559

    Article  ADS  CAS  Google Scholar 

  81. Corley, S.: Particle creation via high frequency dispersion. Physical Review D 55(10), 6155–6161 (1997). https://doi.org/10.1103/PhysRevD.55.6155

    Article  ADS  MathSciNet  CAS  Google Scholar 

  82. Nation, P.D., Blencowe, M.P., Rimberg, A.J., Buks, E.: Analogue Hawking Radiation in a dc-SQUID Array Transmission Line. Physical Review Letters 103(8) (2009). https://doi.org/10.1103/PhysRevLett.103.087004

  83. Leonhardt, U.: Essential Quantum Optics: from Quantum Measurements to Black Holes. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  84. Euvé, L.-P.: Interactions ondes-courant-obstacle : application à la physique des trous noirs. Theses, Université de Poitiers (oct 2017). https://www.theses.fr/2017POIT2280

  85. Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A.: Measurement of Stimulated Hawking Emission in an Analogue System. Physical Review Letters 106, 021302 (2011). https://doi.org/10.1103/PhysRevLett.106.021302

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Isoard, M., Pavloff, N.: Departing from Thermality of Analogue Hawking Radiation in a Bose-Einstein Condensate. Physical Review Letters 124(6), 060401 (2020). https://doi.org/10.1103/PhysRevLett.124.060401

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  87. Choudhary, A., König, F.: Efficient frequency shifting of dispersive waves at solitons. Optics Express 20(5), 5538 (2012). https://doi.org/10.1364/OE.20.005538

  88. Drori, J., Rosenberg, Y., Bermudez, D., Silberberg, Y., Leonhardt, U.: Observation of Stimulated Hawking Radiation in an Optical Analogue. Physical Review Letters 122(1) (2019). https://doi.org/10.1103/PhysRevLett.122.010404

  89. Lahav, O., Itah, A., Blumkin, A., Gordon, C., Rinott, S., Zayats, A., Steinhauer, J.: Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate. Physical Review Letters 105(24), 240401 (2010). https://doi.org/10.1103/PhysRevLett.105.240401

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Nguyen, H.S., Gerace, D., Carusotto, I., Sanvitto, D., Galopin, E., Lemaître, A., Sagnes, I., Bloch, J., Amo, A.: Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons. Physical Review Letters 114, 036402 (2015). https://doi.org/10.1103/PhysRevLett.114.036402

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Človečko, M., Gažo, E., Kupka, M., Skyba, P.: Magnonic Analog of Black- and White-Hole Horizons in Superfluid. Physical Review Letters, 161302 (2019). https://doi.org/10.1103/PhysRevLett.123.161302

  92. Faccio, D., Cacciatori, S., Gorini, V., Sala, V.G., Averchi, A., Lotti, A., Kolesik, M., Moloney, J.V.: Analogue gravity and ultrashort laser pulse filamentation. EPL (Europhysics Letters) 89, 34004 (2010). https://doi.org/10.1209/0295-5075/89/34004

  93. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., Faccio, D.: Hawking Radiation from Ultrashort Laser Pulse Filaments. Physical Review Letters 105(20), 203901 (2010). https://doi.org/10.1103/PhysRevLett.105.203901

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Sala, V.G., Faccio, D.: Quantum Radiation from Superluminal Refractive-Index Perturbations. Physical Review Letters 104(14), 140403 (2010). https://doi.org/10.1103/PhysRevLett.104.140403

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Rizzi, L., Gorini, V., Faccio, D.: Dielectric black holes induced by a refractive index perturbation and the Hawking effect. Physical Review D 83(2) (2011). https://doi.org/10.1103/PhysRevD.83.024015

  96. Rubino, E., Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Sala, V.G., Kolesik, M., Faccio, D.: Experimental evidence of analogue Hawking radiation from ultrashort laser pulse filaments. New Journal of Physics 13(8), 085005 (2011). https://doi.org/10.1088/1367-2630/13/8/085005

    Article  ADS  CAS  Google Scholar 

  97. Liberati, S., Prain, A., Visser, M.: Quantum vacuum radiation in optical glass. Physical Review D 85, 084014 (2012). https://doi.org/10.1103/PhysRevD.85.084014

    Article  ADS  CAS  Google Scholar 

  98. Unruh, W.G., Schützhold, R.: Hawking radiation from “phase horizons” in laser filaments? Physical Review D 86, 064006 (2012). https://doi.org/10.1103/PhysRevD.86.064006

    Article  ADS  CAS  Google Scholar 

  99. Finazzi, S., Carusotto, I.: Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Physical Review A 87(2), 023803 (2013). https://doi.org/10.1103/PhysRevA.87.023803

    Article  ADS  CAS  Google Scholar 

  100. Finazzi, S., Carusotto, I.: Spontaneous quantum emission from analog white holes in a nonlinear optical medium. Physical Review A 89(5), 053807 (2014). https://doi.org/10.1103/PhysRevA.89.053807

    Article  ADS  CAS  Google Scholar 

  101. Jacquet, M., König, F.: Quantum vacuum emission from a refractive-index front. Physical Review A 92(2), 023851 (2015). https://doi.org/10.1103/PhysRevA.92.023851

  102. Bermudez, D., Leonhardt, U.: Hawking spectrum for a fiber-optical analog of the event horizon. Physical Review A 93(5) (2016). https://doi.org/10.1103/PhysRevA.93.053820

  103. Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R., Fabbri, A.: Numerical observation of hawking radiation from acoustic black holes in atomic bose-einstein condensates. New Journal of Physics 10, 103001 (2008). https://doi.org/10.1088/1367-2630/10/10/103001

    Article  ADS  CAS  Google Scholar 

  104. Euvé, L.-P., Michel, F., Parentani, R., Philbin, T.G., Rousseaux, G.: Observation of Noise Correlated by the Hawking Effect in a Water Tank. Physical Review Letters 117(12), 121301 (2016). https://doi.org/10.1103/PhysRevLett.117.121301

    Article  ADS  PubMed  Google Scholar 

  105. Steinhauer, J.: Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nature Physics 12(10), 959–965 (2016). https://doi.org/10.1038/nphys3863

    Article  ADS  Google Scholar 

  106. Muñoz de Nova, J.R., Golubkov, K., Kolobov, V.I., Steinhauer, J.: Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 569(7758) (2019). https://doi.org/10.1038/s41586-019-1241-0

  107. Michel, F., Coupechoux, J.-F., Parentani, R.: Phonon spectrum and correlations in a transonic flow of an atomic Bose gas. Physical Review D 94(8), 084027 (2016). https://doi.org/10.1103/PhysRevD.94.084027

    Article  ADS  Google Scholar 

  108. Leonhardt, U.: Questioning the Recent Observation of Quantum Hawking Radiation. Annalen der Physik 530(5), 1700114 (2018). https://doi.org/10.1002/andp.201700114

    Article  ADS  MathSciNet  Google Scholar 

  109. Steinhauer, J.: Comment on “Questioning the Recent Observation of Quantum Hawking Radiation” [Ann. Phys. (Berlin) 2018, 530, 1700114]. Annalen der Physik 530(5), 1700459 (2018). https://doi.org/10.1002/andp.201700459

  110. Coutant, A., Weinfurtner, S.: Low-frequency analogue Hawking radiation: The Korteweg–de Vries model. Physical Review D 97(2), 025005 (2018). https://doi.org/10.1103/PhysRevD.97.025005

    Article  ADS  MathSciNet  CAS  Google Scholar 

  111. Robertson, S., Michel, F., Parentani, R.: Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables. Physical Review D 96, 045012 (2017). https://doi.org/10.1103/PhysRevD.96.045012

    Article  ADS  Google Scholar 

  112. Coutant, A., Weinfurtner, S.: Low-frequency analogue Hawking radiation: The Bogoliubov-de Gennes model. Physical Review D 97(2), 025006 (2018). https://doi.org/10.1103/PhysRevD.97.025006

    Article  ADS  MathSciNet  CAS  Google Scholar 

  113. Isoard, M., Milazzo, N., Pavloff, N., Giraud, O.: Bipartite and tripartite entanglement in a bose-einstein acoustic black hole. Phys. Rev. A 104, 063302 (2021). https://doi.org/10.1103/PhysRevA.104.063302

    Article  ADS  MathSciNet  CAS  Google Scholar 

  114. Marino, F.: Acoustic black holes in a two-dimensional “photon fluid”. Phys. Rev. A 78, 063804 (2008). https://doi.org/10.1103/PhysRevA.78.063804

    Article  ADS  CAS  Google Scholar 

  115. Nation, P.D., Blencowe, M.P., Rimberg, A.J., Buks, E.: Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett. 103, 087004 (2009). https://doi.org/10.1103/PhysRevLett.103.087004

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Horstmann, B., Reznik, B., Fagnocchi, S., Cirac, J.I.: Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010). https://doi.org/10.1103/PhysRevLett.104.250403

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Visser, M.: Acoustic propagation in fluids: an unexpected example of Lorentzian geometry. arXiv (1993). https://doi.org/10.48550/arXiv.gr-qc/9311028

  118. White, R.W.: Acoustic ray tracing in moving inhomogeneous fluids. The Journal of the Acoustical Society of America 53(6), 1700–1704 (1973). https://doi.org/10.1121/1.1913522

    Article  ADS  Google Scholar 

  119. Anderson, J.L., Spiegel, E.A.: Radiative transfer through a flowing refractive medium. The Astrophysical Journal 202, 454 (1975). https://doi.org/10.1086/153995

    Article  ADS  Google Scholar 

  120. Bassett, B.A., Liberati, S., Molina-París, C., Visser, M.: Geometrodynamics of variable-speed-of-light cosmologies. Phys. Rev. D 62, 103518 (2000). https://doi.org/10.1103/PhysRevD.62.103518

    Article  ADS  Google Scholar 

  121. Volovik, G.E.: Vacuum Energy and Cosmological Constant: View from Condensed Matter. Journal of Low Temperature Physics 124(1), 25–39 (2001). https://doi.org/10.1023/A:1017561415063

    Article  ADS  CAS  Google Scholar 

  122. Fedichev, P.O., Fischer, U.R.: “cosmological” quasiparticle production in harmonically trapped superfluid gases. Phys. Rev. A 69, 033602 (2004). https://doi.org/10.1103/PhysRevA.69.033602

    Article  ADS  CAS  Google Scholar 

  123. Fischer, U.R., Schützhold, R.: Quantum simulation of cosmic inflation in two-component bose-einstein condensates. Phys. Rev. A 70, 063615 (2004). https://doi.org/10.1103/PhysRevA.70.063615

    Article  ADS  CAS  Google Scholar 

  124. Barceló, C., Liberati, S., Visser, M.: Analogue Gravity. Living Reviews in Relativity 14(1), 3 (2011). https://doi.org/10.12942/lrr-2011-3

  125. Kolobov, V.I., Golubkov, K., Muñoz de Nova, J.R., Steinhauer, J.: Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole. Nature Physics, 1–6 (2021). https://doi.org/10.1038/s41567-020-01076-0

  126. Patrick, S., Goodhew, H., Gooding, C., Weinfurtner, S.: Backreaction in an Analogue Black Hole Experiment. Physical Review Letters 126(4), 041105 (2021). https://doi.org/10.1103/PhysRevLett.126.041105

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  127. Fabbri, A., Balbinot, R.: Ramp-up of Hawking Radiation in Bose-Einstein-Condensate Analog Black Holes. Physical Review Letters 126(11), 111301 (2021). https://doi.org/10.1103/PhysRevLett.126.111301

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  128. Richartz, M., Prain, A., Liberati, S., Weinfurtner, S.: Rotating black holes in a draining bathtub: Superradiant scattering of gravity waves. Physical Review D 91, 124018 (2015). https://doi.org/10.1103/PhysRevD.91.124018

    Article  ADS  CAS  Google Scholar 

  129. Patrick, S.: On the analogy between black holes and bathtub vortices. arXiv:2009.02133 [gr-qc, physics:physics] (2020)

  130. Torres, T., Patrick, S., Coutant, A., Richartz, M., Tedford, E.W., Weinfurtner, S.: Rotational superradiant scattering in a vortex flow. Nature Physics 13, 833–836 (2017). https://doi.org/10.1038/nphys4151

    Article  ADS  CAS  Google Scholar 

  131. Braidotti, M.C., Prizia, R., Maitland, C., Marino, F., Prain, A., Starshynov, I., Westerberg, N., Wright, E.M., Faccio, D.: Measurement of Penrose Superradiance in a Photon Superfluid. Physical Review Letters 128(1), 013901 (2022). https://doi.org/10.1103/PhysRevLett.128.013901

    Article  ADS  CAS  PubMed  Google Scholar 

  132. Richartz, M., Weinfurtner, S., Penner, A.J., Unruh, W.G.: Generalized superradiant scattering. Physical Review D 80(12), 124016 (2009). https://doi.org/10.1103/PhysRevD.80.124016

    Article  ADS  CAS  Google Scholar 

  133. Brito, R., Cardoso, V., Pani, P.: Superradiance – the 2020 Edition. arXiv:1501.06570 (2020)

  134. Solnyshkov, D.D., Leblanc, C., Koniakhin, S.V., Bleu, O., Malpuech, G.: Quantum analogue of a Kerr black hole and the Penrose effect in a Bose-Einstein condensate. Physical Review B 99(21), 214511 (2019). https://doi.org/10.1103/PhysRevB.99.214511

    Article  ADS  CAS  Google Scholar 

  135. Dolan, S.R., Oliveira, E.S.: Scattering by a draining bathtub vortex. Phys. Rev. D 87, 124038 (2013). https://doi.org/10.1103/PhysRevD.87.124038

    Article  ADS  CAS  Google Scholar 

  136. Torres, T., Patrick, S., Richartz, M., Weinfurtner, S.: Quasinormal Mode Oscillations in an Analogue Black Hole Experiment. Physical Review Letters 125(1), 011301 (2020). https://doi.org/10.1103/PhysRevLett.125.011301

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  137. Berti, E., Cardoso, V., Lemos, J.P.S.: Quasinormal modes and classical wave propagation in analogue black holes. Physical Review D 70(12), 124006 (2004). https://doi.org/10.1103/PhysRevD.70.124006

    Article  ADS  MathSciNet  CAS  Google Scholar 

  138. Cardoso, V., Miranda, A.S., Berti, E., Witek, H., Zanchin, V.T.: Geodesic stability, lyapunov exponents, and quasinormal modes. Phys. Rev. D 79, 064016 (2009). https://doi.org/10.1103/PhysRevD.79.064016

    Article  ADS  MathSciNet  CAS  Google Scholar 

  139. Dolan, S.R., Oliveira, L.A., Crispino, L.C.B.: Resonances of a rotating black hole analogue. Phys. Rev. D 85, 044031 (2012). https://doi.org/10.1103/PhysRevD.85.044031

    Article  ADS  CAS  Google Scholar 

  140. Schrödinger, E.: The proper vibrations of the expanding universe. Physica 6(7), 899–912 (1939). https://doi.org/10.1016/S0031-8914(39)90091-1

    Article  ADS  MathSciNet  Google Scholar 

  141. Parker, L.: Particle Creation in Expanding Universes. Physical Review Letters 21(8), 562–564 (1968). https://doi.org/10.1103/PhysRevLett.21.562

    Article  ADS  Google Scholar 

  142. Wittemer, M., Hakelberg, F., Kiefer, P., Schröder, J.-P., Fey, C., Schützhold, R., Warring, U., Schaetz, T.: Phonon Pair Creation by Inflating Quantum Fluctuations in an Ion Trap. Physical Review Letters 123 (2019). https://doi.org/10.1103/PhysRevLett.123.180502

  143. Eckel, S., Kumar, A., Jacobson, T., Spielman, I., Campbell, G.: A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab. Physical Review X 8(2), 021021 (2018). https://doi.org/10.1103/PhysRevX.8.021021

    Article  ADS  CAS  Google Scholar 

  144. Banik, S., Galan, M.G., Sosa-Martinez, H., Anderson, M., Eckel, S., Spielman, I.B., Campbell, G.K.: Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes. Physical Review Letters 128(9), 090401 (2022). https://doi.org/10.1103/PhysRevLett.128.090401

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Sakharov, A.D.: The Initial Stage of an Expanding Universe and the Appearance of a Nonuniform Distribution of Matter. Soviet Journal of Experimental and Theoretical Physics 22, 241 (1966)

    ADS  Google Scholar 

  146. Hung, C.-L., Gurarie, V., Chin, C.: From Cosmology to Cold Atoms: Observation of Sakharov Oscillations in a Quenched Atomic Superfluid. Science 341(6151), 1213–1215 (2013). https://doi.org/10.1126/science.1237557

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Chen, C.-A., Khlebnikov, S., Hung, C.-L.: Observation of Quasiparticle Pair Production and Quantum Entanglement in Atomic Quantum Gases Quenched to an Attractive Interaction. Physical Review Letters 127(6), 060404 (2021). https://doi.org/10.1103/PhysRevLett.127.060404

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Steinhauer, J., Abuzarli, M., Aladjidi, T., Bienaimé, T., Piekarski, C., Liu, W., Giacobino, E., Bramati, A., Glorieux, Q.: Analogue cosmological particle creation in an ultracold quantum fluid of light. Nature Communications 13(1), 2890 (2022). https://doi.org/10.1038/s41467-022-30603-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Viermann, C., Sparn, M., Liebster, N., Hans, M., Kath, E., Parra-López, A., Tolosa-Simeón, M., Sánchez-Kuntz, N., Haas, T., Strobel, H., Floerchinger, S., Oberthaler, M.K.: Quantum field simulator for dynamics in curved spacetime. arXiv:2202.10399 (2022)

  150. Jaskula, J.-C., Partridge, G.B., Bonneau, M., Lopes, R., Ruaudel, J., Boiron, D., Westbrook, C.I.: Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate. Physical Review Letters 109(22), 220401 (2012). https://doi.org/10.1103/PhysRevLett.109.220401

    Article  ADS  CAS  PubMed  Google Scholar 

  151. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479(7373), 376–379 (2011). https://doi.org/10.1038/nature10561

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Busch, X., Parentani, R., Robertson, S.: Quantum entanglement due to a modulated dynamical Casimir effect. Physical Review A 89(6), 063606 (2014). https://doi.org/10.1103/PhysRevA.89.063606

    Article  ADS  CAS  Google Scholar 

  153. Frisquet, B., Kibler, B., Morin, P., Baronio, F., Conforti, M., Millot, G., Wabnitz, S.: Optical Dark Rogue Wave. Scientific Reports 6(1), 20785 (2016). https://doi.org/10.1038/srep20785

    Article  ADS  CAS  PubMed  Google Scholar 

  154. Demircan, A., Amiranashvili, S., Steinmeyer, G.: Controlling Light by Light with an Optical Event Horizon. Physical Review Letters 106(16) (2011). https://doi.org/10.1103/PhysRevLett.106.163901

  155. Leonhardt, U.: On cosmology in the laboratory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2049), 20140354 (2015). https://doi.org/10.1098/rsta.2014.0354

    Article  ADS  Google Scholar 

  156. Hill, S., Kuklewicz, C.E., Leonhardt, U., König, F.: Evolution of light trapped by a soliton in a microstructured fiber. Optics Express 17(16), 13588 (2009). https://doi.org/10.1364/OE.17.013588

  157. Bose, S., Roy, S., Chattopadhyay, R., Pal, M., Bhadra, S.K.: Experimental and theoretical study of red-shifted solitonic resonant radiation in photonic crystal fibers and generation of radiation seeded Raman soliton. Journal of Optics 17(10), 105506 (2015). https://doi.org/10.1088/2040-8978/17/10/105506

    Article  ADS  CAS  Google Scholar 

  158. Ciret, C., Leo, F., Kuyken, B., Roelkens, G., Gorza, S.-P.: Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide. Optics Express 24(1), 114–124 (2016). https://doi.org/10.1364/OE.24.000114

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Tartara, L.: Soliton control by a weak dispersive pulse. Journal of the Optical Society of America B 32(3), 395 (2015). https://doi.org/10.1364/JOSAB.32.000395

    Article  ADS  CAS  Google Scholar 

  160. Kanakis, P., Kamalakis, T.: Enabling transistor-like action in photonic crystal waveguides using optical event horizons. Optics Letters 41(7), 1372–1375 (2016). https://doi.org/10.1364/OL.41.001372

    Article  ADS  PubMed  Google Scholar 

  161. Wang, S.F., Mussot, A., Conforti, M., Bendahmane, A., Zeng, X.L., Kudlinski, A.: Optical event horizons from the collision of a soliton and its own dispersive wave. Physical Review A 92(2) (2015). https://doi.org/10.1103/PhysRevA.92.023837

  162. Bose, S., Melchert, O., Babushkin, I., Pal, M., Steinmeyer, G., Morgner, U., Demircan, A.: Fiber event horizon by single color pump. In: Conference on Lasers and Electro-Optics, San Jose, California, pp. 3–2 (2019). https://doi.org/10.1364/CLEO_SI.2019.SW3H.2

  163. Yang, H., Chen, S., Zhao, S., Yang, Y.: Observation of the quasi-discrete supercontinuum at optical event horizon. Optics Communications 478, 126379 (2021). https://doi.org/10.1016/j.optcom.2020.126379

    Article  CAS  Google Scholar 

  164. Abbott, B.P., LIGO Scientific Collaboration and Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6) (2016). https://doi.org/10.1103/PhysRevLett.116.061102

  165. Echeverria, F.: Gravitational-wave measurements of the mass and angular momentum of a black hole. Phys. Rev. D 40, 3194–3203 (1989). https://doi.org/10.1103/PhysRevD.40.3194

    Article  ADS  CAS  Google Scholar 

  166. Torres, T., Coutant, A., Dolan, S., Weinfurtner, S.: Waves on a vortex: rays, rings and resonances. Journal of Fluid Mechanics 857, 291–311 (2018). https://doi.org/10.1017/jfm.2018.752

    Article  ADS  MathSciNet  CAS  Google Scholar 

  167. Torres, T., Patrick, S., Richartz, M., Weinfurtner, S.: Analogue black hole spectroscopy; or, how to listen to dumb holes. Classical and Quantum Gravity 36(19), 194002 (2019). https://doi.org/10.1088/1361-6382/ab3d48

    Article  ADS  MathSciNet  CAS  Google Scholar 

  168. Steinhauer, J.: Viewpoint: Modeling Quantum Field Theory. Physics 5 (2012)

  169. Weinfurtner, S.: Quantum simulation of black-hole radiation. Nature 569(7758) (2019). https://doi.org/10.1038/d41586-019-01592-x

  170. Liberati, S., Tricella, G., Trombettoni, A.: The Information Loss Problem: An Analogue Gravity Perspective. Entropy 21(10), 940 (2019). https://doi.org/10.3390/e21100940

    Article  ADS  MathSciNet  CAS  Google Scholar 

  171. McCormick, K.: Uncovering gravity’s secrets with a fluid of atoms. Proceedings of the National Academy of Sciences 119(34), 2212186119 (2022). https://doi.org/10.1073/pnas.2212186119

    Article  CAS  Google Scholar 

  172. Leonhardt, U.: The case for a Casimir cosmology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378(2177), 20190229 (2020). https://doi.org/10.1098/rsta.2019.0229

    Article  ADS  MathSciNet  CAS  Google Scholar 

  173. Jacquet, M.J., Giacomelli, L., Valnais, Q., Joly, M., Claude, F., Giacobino, E., Glorieux, Q., Carusotto, I., Bramati, A.: Quantum vacuum excitation of a quasi-normal mode in an analog model of black hole spacetime. arXiv:2110.14452 (2022)

  174. Euvé, L.-P., Robertson, S., James, N., Fabbri, A., Rousseaux, G.: Scattering of Co-Current Surface Waves on an Analogue Black Hole. Physical Review Letters 124(14) (2020). https://doi.org/10.1103/PhysRevLett.124.141101

  175. Bartha, P.: Prospects for analogue confirmation. Philosophy of Science, 1–23 (2022). https://doi.org/10.1017/psa.2022.65

Download references

Acknowledgements

While brainstorming this manuscript, trying to connect history and modern physics, we have benefited enormously from insightful discussions with Grace Fields. We thank her wholeheartedly for those conversations and for carefully reading this manuscript and providing feedback that certainly helped us improve our work. We also thank William Unruh for his readiness to answer a few questions that had appeared during the research process and for allowing us to use his original drawing of a fish in a waterfall in this recounting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carla R. Almeida or Maxime J. Jacquet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, C.R., Jacquet, M.J. Analogue gravity and the Hawking effect: historical perspective and literature review. EPJ H 48, 15 (2023). https://doi.org/10.1140/epjh/s13129-023-00063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjh/s13129-023-00063-2

Navigation