Skip to main content
Log in

Anatoly Vlasov heritage: 60-year-old controversy

  • Regular Article
  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

We analyzed remarkable stories linked to the famous Anatoly Vlasov equations in plasma physics. Their creation, modification, and application are interesting from the scientific viewpoint. We also show the relations between those equations dealing with electromagnetism and analogous Jeans equations describing, in particular, gravitational instability in astrophysics. The second half of the essay is devoted to the controversies and political struggle in Soviet (before 1991) and Russian (after 1991) physical communities related to Vlasov’s personality, career, and posthumous recognition. The never-ending destructive influence of the Russian totalitarianism on science is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Ukrainian experimentalist Komnik (A. G. heard his regrets personally) excluded some strange original results from his book describing electrical conductivity of thin metallic films [154]. However, the excluded logarithmic temperature dependencies correspond to genuine quantum mechanical interference effects and were discovered theoretically somewhat later [4, 15].

  2. Biography of Anatoliy Vlasov can be found in [30].

  3. Recall the name of the continent in the Western Hemisphere.

  4. Lord Rayleigh [187] obtained the same plasma frequency while analyzing the properties of the J. J. Thomson plum pudding model atom [255]. Namely, Lord Rayleigh assumed that positive and negative entities in an atom are equal in all respects accept the ability to move: negative charges were considered mobile. It is exactly the behavior of light electrons against heavy ions in gas-discharge and metal plasmas.

  5. According to Earnshaw’s theorem, even quasi-neutrality would not ensure the stability of classical macroscopic systems [75]. Nevertheless, the situation in the quantum mechanical and relativistic world is different. If one considers corresponding complications, the problem of matter stability becomes much more involved [178].

  6. To formulate self-consistent kinetic equations without collisions (the Boltzmann-like equations without the Stoß term, which is responsible for collisions) but for any long-range field, one can follow Vlasov’s way of treating electromagnetic interaction. However, to call them Vlasov–Newton, Vlasov–Einstein, and Vlasov–Maxwell equations [262] reflects the imperial hubris and misinterpreted patriotism. Such equations were first proposed to describe the evolution of a collective of stars in the Newtonian universe, whereas the long-range field was represented by the gravitational potential. It was done by the eminent British physicist and astronomer James Jeans, who applied the Boltzmann approach considering stars as particles [127, 140, 141].

  7. Ginzburg et al. [105]; hereafter, for the sake of brevity, we shall refer to the authors as a “gang of four,” similarly to the authors of the famous highly cited article by Abrahams et al. [4] devoted to the weal localization in two-dimensional disordered systems that was so coined later on [3, 165].

  8. An overview of the problem of Landau damping in plasma physics and astrophysics can be found in [34, 204, 231].

  9. Vlasov wanted to bypass the calculation of the Gibbs partition function, from which one can find all the thermodynamic functions of the system. If his approximation had worked, it would have been a great success, since calculation of the partition function is always difficult and, in most cases, impossible. However, Vlasov failed. For example, the gang of four [105, p. 249] pointed out that, according to Vlasov theory, the period of the crystal lattice should strongly depend on temperature, which contradicts the experiment and discredits the theory within which this result was obtained.

  10. The adiabatic (Laplacian) and isothermal (Newtonian) speeds of sound are related as \((c_{\text{p}}/c_{\text{v}})^{1/2}\), where \(c_{\text{p}}\) and \(c_{\text{v}}\) are gas specific heat capacities at constant pressure and volume, respectively [170]. Naturally, this ratio depends on the parameters of a particular substance, but for real gases, the order of magnitude of the speed of sound remains the same whatever the process of sound propagation [168, 225].

  11. See, e. g., [170, p. 3]. In essence, Euler’s equation is a formulation of Newton’s second law for the fluid motion [10]. The biography of the great Swiss mathematician Leonhard Euler and the analysis of his differential equations can be found in [226, 254].

  12. For the Jeans instability in the quasi-static Einstein–de Sitter model, see: [49, 55, pp. 174–178; 148, p. 146]. Studies of instabilities in the Friedmann–Lemaître model are discussed, in particular, in [55, pp. 178–184; 113, pp. 13–20; 118, 179, 180, 181, 279, pp. 285–309].

  13. The inevitability of classical and quantum fluctuations and their important role against the background of average statistical (thermodynamic) characteristics of systems have long been known and are being widely studied now, in particular, in magnetic, superconducting, and ferroelectric materials, where, apart from the crystalline order, additional order parameters are observed with the loss of some symmetry. Of course, fluctuations there can be “touched,” if not by experimentalists themselves then at least with the help of simple devices. This distinguishes these “terrestrial” fluctuations favorably from theoretically assumed fluctuations in astrophysics, which are discussed here. One can read about fluctuations in plasma, condensed media, and devices in Refs. [108, 134, 168, 173, 197, 200, 211, 220, 244].

  14. The first attempts to overcome the inadequacy of the Newtonian theory to describe a spatially unlimited Universe uniformly filled with matter (“gravitational paradox”) belong to the outstanding German scientists Hugo von Seeliger and Carl Neumann [160, p. 53; 212, pp. 271–323; 213, pp. 65–71].

  15. The history of physics should include a description in terms of attributes and their carriers [96].

  16. Hideki Yukawa was a renowned Japanese researcher who made contributions to nuclear physics and field theory [194, 277].

  17. This problem was analyzed in detail but much later [9, 17, 51, 74, 85, 202, 206, 248, 249].

  18. Actually, Marxist in form, but meaningless in content, mumbling of Marxist philosophers (it would be more valid to add the prefix “pseudo”) easily turns into religious fundamentalism (which has nothing in common with the Christian theology of civilized Europe). For instance, such a metamorphosis occurred with the French revolutionary Roger Garaudy, who from a devoted Marxist became an Islamic fundamentalist and a professional outspoken anti-Semite [98].

  19. Anyway, those points, which were criticized by the gang of four, were not touched upon in the Bogolyubov monograph [41], so the Rukhadze attempt to rely on Bogolyubov’s authority is not justified.

  20. Ginzburg [102] quite frankly notes that the main trigger causing the appearance of the gang-of-four article was the role of Vlasov as the banner of the communist establishment of Moscow State University, which hunted physics and physicists and prepared the destruction of physics in the style of the destruction of genetics by the notorious academician Trofim Lysenko. If Vlasov’s dangerous public role had not been so evident, his mistakes would hardly have been noticed. At the same time, from the scientific viewpoint, as Ginzburg writes, the article of four authors was flawless. However, the crushing tone of the academicians’ article induced such emotions that it also cast doubt on the main results of Vlasov’s 1938 article, which were and are of great scientific importance. Still, the gang of four did not know (or forgot) about the priority of Jeans regarding the self-consistent field, so Vlasov managed to avoid criticism in this respect then and throughout his later life.

  21. Vladimir Moiseevich Agranovich is a well-known Ukrainian and Russian physicist. Since the 1990s, he has been working in the West; https://ru.wikipedia.org/wiki/Aгpaнoвич,_Bлaдимиp_Moиceeвич.

References

  1. Abbott, B. P. et al. 2016. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116 (6): 061102

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  2. Ablowitz, M. J. and A. S. Fokas. 2003. Complex Variables. Introduction and Applications. 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  3. Abrahams, E. Ed. 2010. 50 Years of Anderson Localization. World Scientific, Singapore.

    Google Scholar 

  4. Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan. 1979. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42 (10): 673-676

    ADS  Google Scholar 

  5. Academy of Sciences of the USSR. Academy of Medical Sciences of the USSR. Scientific Session Dedicated to the Problems of the Physiological Doctrine of Academician I. P. Pavlov. June 28 – July 4 – 1950. AN SSSR, Moscow-Leningrad (In Russian)

  6. Afanasiev, G. N. 2004. Vavilov-Cherenkov and Synchrotron Radiation. Foundations and Applications. Springer, New York

    Google Scholar 

  7. Akhiezer A. I. Ed. 1974. Plasma Electrodynamics. Nauka, Moscow (In Russian)

    Google Scholar 

  8. Akhiezer, A. I., I. A. Akhiezer, and R. V. Polovin. 1967. Collective Oscillations in a Plasma. Cambridge MIT Press, Cambridge, MA

    Google Scholar 

  9. Akhundov M. D. and L. B. Bazhenov. 1989. At the origins of ideologized science. Priroda (Nature) N2: 90-99 (In Russian)

    Google Scholar 

  10. Alam, M-R. 2021. Why does water shoot higher if we partially block the garden hose outlet? Amer. J. Phys. 89 (6): 567-574

    ADS  Google Scholar 

  11. Aleksandrov, A. F., L. S. Bogdankevich, A. A. Rukhadze. 1990. Oscillations and Waves in Plasma Media. Moscow University Press, Moscow (In Russian)

    Google Scholar 

  12. Aleksandrov, A. F. and A. A. Rukhadze. 1997. On the history of fundamental papers on the kinetic plasma theory. Plasma Phys. Rep. 23 (5): 442-447

    ADS  Google Scholar 

  13. Allen, B. 2019. The Nobel lectures on gravitational waves and LIGO. Ann. Phys. (Berlin) 531 (1): 1800442

    ADS  Google Scholar 

  14. Allen, J. E. and A. D. R. Phelps. 1977. Waves and microinstabilities in plasmas – linear effects. Rep. Prog. Phys. 40 (11): 1305-1368

    ADS  CAS  Google Scholar 

  15. Altshuler, B. L., A. G. Aronov, and P. A. Lee. 1980. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett. 44 (19): 1288-1291

    ADS  CAS  Google Scholar 

  16. Anderson, P. W. 2011. More and Different. Notes from a Thoughtful Curmudgeon. World Scientific, Singapore

    Google Scholar 

  17. Andreev, A. V. 2000. Physicists Do Not Joke. Pages of the Social History of the Research Institute of Physics at Moscow State University (1922–1954). Progress-Tradition, Moscow (in Russian)

  18. Annett, J. F. 2004. Superconductivity, Superfluids and Condensates. Oxford University Press, Oxford

    Google Scholar 

  19. Askerov, B. M. and S. R. Figarova. 2010. Thermodynamics. Gibbs Method and Statistical Physics of Electron Gases. Springer, Berlin

    Google Scholar 

  20. Backus, G. 1960. Linearized plasma oscillations in arbitrary electron velocity distributions. J. Math. Phys. 1 (3): 178-191

    ADS  MathSciNet  Google Scholar 

  21. Baggott, J. 2020a. Quantum Reality. The Quest for the Real Meaning of Quantum Mechanics – a Game of Theories. Oxford University Press, Oxford

    Google Scholar 

  22. Baggott, J. 2020b. The Quantum Cookbook. Mathematical Recipes for the Foundations of Quantum Mechanics. Oxford University Press, Oxford

    Google Scholar 

  23. Balescu, R. 1960. Irreversible processes in ionized gases. Phys. Fluids 3 (1): 52-63

    ADS  MathSciNet  Google Scholar 

  24. Balescu, R. 1963 Statistical Mechanics of Charged Particles. Interscience, New York

    Google Scholar 

  25. Ball, P. 2016. No result, no problem? Phys. World 29 (5): 38-41

    ADS  Google Scholar 

  26. Bardeen, J., L. N. Cooper, and J. R. Schrieffer. 1957. Theory of superconductivity. Phys. Rev. 108 (5): 1175-1204

    ADS  MathSciNet  CAS  Google Scholar 

  27. Bardeen, J. and W. Shockley. 1950. Energy bands and mobilities in monatomic semiconductors. Phys. Rev. 80 (1): 72-80

    ADS  CAS  Google Scholar 

  28. Barish, B. 2019. LIGO and gravitational Waves, II: Nobel lecture, December 8, 2017. Ann. Phys. (Berlin). 531 (1): 1800357

    ADS  Google Scholar 

  29. Barry, J. D. 1980. Ball Lightning and Bead Lightning. Extreme Forms of Atmospheric Electricity. Springer, New York

    Google Scholar 

  30. Bazarov I. P. and P. N. Nikolaev. 1999. Anatoliy Aleksandrovich Vlasov. Physical Department of the Moscow State University, Moscow (In Russian)

    Google Scholar 

  31. Berg A. I. and M. I. Radovskiy. 1945. Aleksandr Stepanovich Popov. Gosenergoizdat, Moscow (In Russian)

    Google Scholar 

  32. Bergmann, P. G. 1976. Introduction to the Theory of Relativity. Dover Publications, New York

    Google Scholar 

  33. Bernstein, B., Greene, J. M. and M. D. Kruskal. 1957. Exact nonlinear plasma oscillations. Phys. Rev. 108 (3): 546-550

    ADS  MathSciNet  Google Scholar 

  34. Bertrand, P., D. Del Sarto and A. Ghizzo. 2019. The Vlasov equation 1. History and General Properties. ISTE Ltd, London

    Google Scholar 

  35. Berz, F. 1956. On the theory of plasma waves. Proc. Phys. Soc. B 69 (9): 939-952

    ADS  Google Scholar 

  36. Bilukha, Yu. Ed. 1999. Deported Crimean Tatars, Bulgarians, Armenians, Greeks, Germans. Collection of Documents of the Autonomous Republic of Crimea (1989–1999). Abris, Kyiv (In Ukrainian)

  37. Binney, J. and S. Tremaine. 2008. Galactic Dynamics. Princeton University Press, Princeton

    Google Scholar 

  38. Bisnovatyi-Kogan, G. S. 2011. Stellar Physics. 2. Stellar Evolution and Stability. Springer, Berlin

    Google Scholar 

  39. Blokh, A. M. 2005. The Soviet Union in the Interior of Nobel Prizes. Data. Documents. Reflections. Comments. Second Revised and Enlarged Edition. Fizmatlit, Moscow (In Russian)

  40. Boerner, H. 2019. Ball Lightning. A Popular Guide to a Longstanding Mystery in Atmospheric Electricity. Springer, Cham

    Google Scholar 

  41. Bogolyubov, N. N. 1946. Problems of Dynamic Theory in Statistical Physics. OGIZ, State Publishing House of Technical and Theoretical Literature, Moscow-Leningrad (In Russian)

    Google Scholar 

  42. Bohenski, J. M. 1963. Soviet Russian Dialectical Materialism [Diamat]. Reidel, Dordrecht

    Google Scholar 

  43. Bohm, D. and E. P. Gross. 1949a. Theory of plasma oscillations. A. Origin of medium-like behavior. Phys. Rev. 75 (12): 1851-1864

    ADS  Google Scholar 

  44. Bohm, D. and E. P. Gross. 1949b. Theory of plasma oscillations. B. Excitation and damping of oscillations. Phys. Rev. 75 (12): 1864-1876

    ADS  Google Scholar 

  45. Boltzmann, L. 1897. Vorlesungen über die Principien der Mechanik. I. Teil. Verlag von Johann Ambrosius Barth, Leipzig (In German)

    Google Scholar 

  46. Boltzmann, L. 1904. Vorlesungen über die Principien der Mechanik. II. Teil. Verlag von Johann Ambrosius Barth, Leipzig (In German)

    Google Scholar 

  47. Bondi, H. 1960. Cosmology. Cambridge University Press, Cambridge, p. 80

    Google Scholar 

  48. Bonnor, W. B. 1957. Jeans’ formula for gravitational instability. Monthly Notices Roy. Astron. Soc. 117 (1): 104-117

    ADS  MathSciNet  Google Scholar 

  49. Börner, G. 2003. The Early Universe. Facts and Fiction. Springer, Berlin

    Google Scholar 

  50. Brodin, G. 1997. A new approach to linear Landau damping. Amer. J. Phys. 65 (1): 66-74

    ADS  Google Scholar 

  51. Brudny, Y. M. 1999. Reinventing Russia. Russian Nationalism and the Soviet State, 1953-1991. Harvard University Press, Cambridge, MA

    Google Scholar 

  52. Brush, S. G. and N. S. Hall. 2003. The Kinetic Theory of Gases. An Anthology of Classic Papers with Historical Commentary. Imperial College Press, London

    Google Scholar 

  53. Burgin, M. S. and O. M. Gabovich. 1997. Why the discovery was not made? Herald of the NASU, N 3-4, p. 55-60 (In Ukrainian)

  54. Burke, W. L. 1980. Spacetime, Geometry, Cosmology. University Science Books, Mill Valley, CA

    Google Scholar 

  55. Byrd, G. G., Chernin, A. D. and M. J. Valtonen. 2007. Cosmology: Foundations and Frontiers. URSS, Moscow

    Google Scholar 

  56. Case, K. M. 1959. Plasma Oscillations. Ann. Phys. 7 (3): 349-364

    ADS  MathSciNet  Google Scholar 

  57. Chadwick, J. 1932a. Possible existence of a neutron. Nature 129 (3252): 312

    ADS  CAS  Google Scholar 

  58. Chadwick, J. 1932b. The existence of a neutron. Proc. R. Soc. Lond. A 136 (830): 692-708

    ADS  CAS  Google Scholar 

  59. Chen, F. F. 2015. Introduction to Plasma Physics and Controlled Fusion. Third Edition. Springer, Cham

    Google Scholar 

  60. Cheremnykh, N. A. and I. F. Shipilov. 1955. A. F. Mozhaiskiy – Creator of the World’s First Aircraft. Military Publishing House of the USSR Ministry of Defense, Moscow (In Russian)

    Google Scholar 

  61. Clarke, C. and B. Carswell. 2007. Principles of Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  62. Clemmow, P. C. and J. P. Dougherty. 1990. Electrodynamics of Particles and Plasmas. CRC Press, Boca Raton

    Google Scholar 

  63. Clemmow, P. C. and A. J. Willson. 1956. The dispersion equation in plasma oscillations. Proc. R. Soc. Lond. A 237 (1208): 117-131

    ADS  CAS  Google Scholar 

  64. Cooray, V. 2015. An Introduction to Lightning. Springer, Dordrecht

    Google Scholar 

  65. Corry, L., J. Renn, and J. Stachel. 1997. Belated decision in the Hilbert-Einstein priority dispute. Science 278 (5341): 1270-1273

    ADS  MathSciNet  CAS  Google Scholar 

  66. Cyrot, M. 1973. Ginzburg-Landau theory for superconductors. Rep. Prog. Phys. 36 (2): 103-158

    ADS  CAS  Google Scholar 

  67. Danilevskiy, V. V. 1947. Russian Technology. Leningrad Newspaper, Magazine and Book Publishing House, Leningrad (In Russian)

    Google Scholar 

  68. Dawson, J. 1961. On Landau damping. Phys. Fluids 4 (7): 869-874

    ADS  Google Scholar 

  69. Dawson, J. 1962. One-dimensional plasma model. Phys. Fluids 5 (4): 445-459

    ADS  Google Scholar 

  70. Debye, P. and E. Hückel. 1923. Zur Theorie der Elektrolyte. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physik. Ztschr. 24: 185-206 (In German)

    CAS  Google Scholar 

  71. Degen I. 2014. Compared to 1913. Notes on Jewish History N 2 (172) (In Russian)

  72. De Sitter, W. 1917. On Einstein’s theory of gravitation and its astronomical consequences. Third paper. Month. Notices Roy. Astron. Soc. 78 (1): 3-28

    ADS  Google Scholar 

  73. Dieterich, W., P. Fulde, and I. Peschel. 1980. Theoretical models for superionic conductors. Adv. Phys. 29 (3): 527-605

    ADS  CAS  Google Scholar 

  74. Dunlop, J. B. 1983. The Faces of Contemporary Russian Nationalism. Princeton University Press, Princeton, NJ

    Google Scholar 

  75. Earnshaw, S. 1842. On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Transact. Cambridge Philosoph. Soc. 7: 97-112

    ADS  Google Scholar 

  76. Eckstein, M. and P. Horodecki. 2022. The experiment paradox in physics. Found. Sci. 27 (1): 1-15

    MathSciNet  Google Scholar 

  77. Eddington, A. 1933. The Expanding Universe. Cambridge University Press, Cambridge, P. 23-24

    Google Scholar 

  78. Einstein, A. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik 4 (17): 891-921 (In German)

    ADS  Google Scholar 

  79. Einstein, A. 1915. Die Feldgleichungen der Gravitation. Sitzungsber. Preuss. Akad. Wiss. 48 (2): 844-847 (In German)

    Google Scholar 

  80. Einstein, A. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Preuss. Akad. Wiss. 1:142-152 (In German)

    Google Scholar 

  81. Einstein, A. and L. Infeld. 1967. Evolution of Physics. The Scientific Book Club, London.

    Google Scholar 

  82. Eisenberg, J. M. and W. Greiner. 1975. Nuclear Theory. Volume1. Nuclear Models. North Holland, Amsterdam

  83. Elskens, Y. and D. Escande. 2003. Microscopic Dynamics of Plasmas and Chaos. Institute of Physics Publishing, Bristol

    Google Scholar 

  84. Enserink, M. 2008. Dutch universities split over Nobel laureate’s rehabilitation. Science 319 (5862) 401

    CAS  PubMed  Google Scholar 

  85. Esakov, V. D. and E. S. Levina. 2005. Stalin’s Courts of Honor. KR Case. Nauka, Moscow (In Russian)

  86. Farrell, J. 2005. The Day Without Yesterday. Lemaître, Einstein and the Birth of Modern Cosmology. Basic Books, New York

    Google Scholar 

  87. Ferngren, G. B. Ed. 2000. The History of Science and Religion in the Western Tradition. An Encyclopedia. Garland, New York

  88. Fikhtengoltz, G. M. 1963. Course in Differential and Integral Calculus, Volume 3, Third Edition. Fizmatgiz, Moscow (In Russian)

  89. Flores-Livas, J. A., L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets. 2020. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 856, P. 1-78

    ADS  MathSciNet  CAS  Google Scholar 

  90. Frazer J. G. 2009. The Golden Bough. A Study of Magic and Religion. The Floating Press, Auckland

    Google Scholar 

  91. Freire, Jr., O. 2015. The Quantum Dissidents. Rebuilding the Foundations of Quantum Mechanics (1950-1990). Springer, Berlin

    Google Scholar 

  92. Friedman, A. 1999. On the curvature of space. Gen. Relativ. Gravit. 31 (12) 1991-2000

    ADS  Google Scholar 

  93. Friedmann, A. 1999. On the possibility of a world with constant negative curvature of space. Gen. Relativ. Gravit. 31 (12) 2001-2008

    ADS  MathSciNet  Google Scholar 

  94. Gabovich, A. M. and V. I. Kuznetsov. 2013. What do we mean when using the acronym 'BCS'? The Bardeen–Cooper–Schrieffer theory of superconductivity. Eur. J. Phys. 34 (2): 371-382

    Google Scholar 

  95. Gabovich, A. and V. Kuznetsov. 2019. Towards periodizations of science in the history of science. In: Conference Book of Proceedings of 15th International Conference “History, Philosophy, and Science Teaching”, Re-Introducing Science: Sculpting the Image of Science for Education and Media in Its Historical and Philosophical Background, Thessaloniki, Greece, July 15th- July 19th, 2019. P. 585–594

  96. Gabovich, A. and V. Kuznetsov. 2022. Path of modern natural sciences: from discovery of realities to study of their attributes. Studies in History and Philosophy of Science and Technology, 31(2): 3-15. https://doi.org/10.15421/272214

    Article  Google Scholar 

  97. Gamow, G. and E. Teller 1939. On the origin of great nebulae. Phys. Rev. 55 (7): 654-657

    ADS  CAS  Google Scholar 

  98. Garaudy, R. 1994. Verheißung im Islam. SKD Bavaria, Munich (In German)

  99. Gibbs, J. W. 1928. The Collected Works of J. Willard Gibbs in Two Volumes. Volume 2 Elementary Principles in Statistical Mechanics. Dynamics. Vector Analysis and Multiple Algebra. Electromagnetic Theory of Light etc. Longmans, Green and Co, New York

  100. Ginzburg, V. L. 1967. Propagation of Electromagnetic Waves in Plasma, Second Revised Edition. Nauka, Moscow (In Russian)

    Google Scholar 

  101. Ginzburg, V. L. 1989. Applications of Electrodynamics in Theoretical Physics and Astrophysics. Gordon and Breach Science Publishers, New York

    Google Scholar 

  102. Ginzburg, V. L. 2000. About some pseudo-historians of physics. Issues Hist. Natural Sci. Technol. N 4: 5-14 (In Russian)

    Google Scholar 

  103. Ginzburg, V. L. 2004. Nobel Lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys. 76 (3): 981-998

    ADS  CAS  Google Scholar 

  104. Ginzburg, V. L. and L. D. Landau. 1950. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20 (12): 1064-1082 (In Russian)

    CAS  Google Scholar 

  105. Ginzburg, V. L., L. D. Landau, M. Leontovich, V. Fock. 1946. About the inconsistency of A. A. Vlasov works on the generalized plasma theory and solid state theory. Zh. Eksp. Teor. Fiz. 16 (3): 246-252 (In Russian)

  106. Ginzburg, V. L. and A. A. Rukhadze. 1975. Waves in magnetoactive plasma. Second revised edition. Nauka, Moscow (In Russian)

  107. Girifalco, L. A. 2000. Statistical Mechanics of Solids. Oxford University Press, Oxford

    Google Scholar 

  108. Glansdorff, P. and I. Prigogine. 1971. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London

    Google Scholar 

  109. Golovin, G. 1945. Alexander Stepanovich Popov. Molodaya Gvardiya, Moscow (In Russian)

    Google Scholar 

  110. Goncharov, G. A. 1996a. American and Soviet H-bomb development programmes: historical background. Physics-Uspekhi 39 (10): 1033-1044

    ADS  Google Scholar 

  111. Goncharov, G. A. 1996b. Thermonuclear milestones. Phys. Today 49 (11): 44

    Google Scholar 

  112. Gorbunov, D. S. and V. A. Rubakov. 2011a. Introduction to the Theory of the Early Universe. Hot Big Bang Theory. World Scientific, Singapore

    Google Scholar 

  113. Gorbunov, D. S. and V. A. Rubakov. 2011b. Introduction to the Theory of the Early Universe. Cosmological Perturbations and Inflationary Theory. World Scientific, Singapore

    Google Scholar 

  114. Gordon, A. 2019. Interview, https://sem40.co.il/315810-intervju-s-aleksandrom-gordonom-avtorom-trilogii-trilogii-bezrodnye-patrioty-korennye-chuzhaki-urozhdennye-inozemcy.html (In Russian)

  115. Gorobets, B. S. 2008. Landau and Lifshitz Circle. URSS, Moscow (In Russian)

    Google Scholar 

  116. Gorter, C. J. 1955. The two fluid model for superconductors and helium II. Prog. Low Temp. Phys. 1, p. 1-16.

    CAS  Google Scholar 

  117. Grad, H. 1949. On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (4): 331-407

    MathSciNet  Google Scholar 

  118. Gurevich, L. E. and A. D. Chernin. 1978. Introduction to Cosmogony. Origin of the Large-Scale Structure of the Universe. Nauka, Moscow (In Russian)

    Google Scholar 

  119. Gurevich, Yu. Ya. 1986. Solid Electrolytes. Nauka, Moscow (In Russian)

    Google Scholar 

  120. Gurov, K. P. 1966. Foundations of the Kinetic Theory. N. N. Bogolyubov’s method. Nauka, Moscow (In Russian)

    Google Scholar 

  121. Harned, H. S., B. B. Owen. 1939. The Physical Chemistry of Electrolytic Solutions. Reinhold Publishing Corporation, New York

    Google Scholar 

  122. Harrison, W. A. 1966. Pseudopotentials in the Theory of Metals. W. A. Benjamin, New York

    Google Scholar 

  123. Harrison, W. A. 1980. Electronic Structure and the Properties of Solids. The Physics of the Chemical Bond. W. H. Freeman, San Francisco

    Google Scholar 

  124. Haugen, K. L. 2011. Richard Bentley. Poetry and Enlightenment. Harvard University Press, Cambridge, MA

    Google Scholar 

  125. Hazeltine, R. D. and F. Waelbroeck. 2018. The Framework of Plasma Physics. CRC Press, Boca Raton

    Google Scholar 

  126. Heisenberg, W. 1932. Über den Bau den Atomkerne. Zs. Phys. 77 (1): 1-11 (In German)

    ADS  CAS  Google Scholar 

  127. Hénon, M. 1982. Vlasov equation? Astron. Astrophys. 114 (1): 211-212

    ADS  Google Scholar 

  128. Hernández-Gómez, J. J. and R. W. Gómez-González. 2021. An historical account of the two-fluid theory for superfluidity. Eur. J. Phys. 42 (4): 043001

    Google Scholar 

  129. Hill, H. M. 2022. Physics Nobel honors foundational quantum entanglement experiments. Phys. Today 75 (12): 14-17

    ADS  CAS  Google Scholar 

  130. Hodge, P. W. 1986. Galaxies. Harvard University Press, Cambridge, MA

    Google Scholar 

  131. Inaba, H. 2015. Reading Elementary Principles: Gibbs and the origin of statistical mechanics. Ann. Phys. (Berlin) 527 (11-12): A102-A104

    ADS  MathSciNet  Google Scholar 

  132. Infeld, L. 1947. Portrait: Einstein. Amer. Scholar 16 (3): 337-341

    Google Scholar 

  133. Inglesfield, J. E. 1982. Surface electronic structure. Rep. Prog. Phys. 45 (3): 223-284

    ADS  Google Scholar 

  134. Ivanchenko, Yu. M. and A. A. Lisyansky. 1995. Physics of Critical Fluctuations. Springer, New York

    Google Scholar 

  135. Iveronova, V. I., G. V. Kurdyumov and Ya. S. Umanskii. 1970. Sergei Tikhonovich Konobeevskiy (on his Eightieth Birthday). Sov. Physics-Uspekhi 13 (3): 424-426

    ADS  Google Scholar 

  136. Iwanenko, D. 1932. The neutron hypothesis. Nature 129 (3265): 798

    ADS  Google Scholar 

  137. Jackson, J. D. 1998. Classical Electrodynamics. John Wiley, Hoboken, NJ

    Google Scholar 

  138. Jackson, J. D. 2008. Examples of the zeroth theorem of the history of science. Amer. J. Phys. 76 (8): 704-719

    ADS  Google Scholar 

  139. Jeans, J. H. 1902. The stability of a spherical nebula. Phil. Trans. R. Soc. Lond. 199 (312-320) 1-53

    ADS  Google Scholar 

  140. Jeans, J. H. 1915. On the theory of star-streaming and the structure of the Universe. Monthly Notices Roy. Astron. Soc. 76 (2): 70-84

    ADS  Google Scholar 

  141. Jeans, J. H. 1919. Problems of Cosmology and Stellar Dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  142. Kadomtsev, B. B. 1968. Landau damping and echo in a plasma. Sov. Physics-Uspekhi 11 (3): 328-337

    ADS  MathSciNet  Google Scholar 

  143. Kadomtsev, B. B. 1976. Collective Phenomena in Plasma. Nauka, Moscow (In Russian)

    Google Scholar 

  144. Kadomtsev, B. B., L. V. Keldysh, I. Yu. Kobzarev, and R. Z. Sagdeev. 1972. Apropos A. A. Tyapkin’s paper: “Expression of the general properties of physical processes in the space-time metric of the special theory of relativity.” Sov. Physics-Uspekhi 15 (2): 230-231

    ADS  Google Scholar 

  145. Kanevskiy, B. A. and V. A. Senderov. 1980. Intellectual Genocide. Exams for Jews: Moscow State University, Moscow Institute of Physics and Technology, Moscow Engineering and Physical Institute. Moscow, https://www.mccme.ru/shen/senderov/ig-text.pdf (In Russian)

  146. Khlopov, M. Yu. and S. G. Rubin. 2004. Cosmological Pattern of Microphysics in the Inflationary Universe. Springer, Dordrecht

    Google Scholar 

  147. Kienle, H. Ed. 1924. Probleme der Astronomie. Festschrift für Hugo v. Seeliger dem Forscher und Lehrer zum Fünfundsiebzigsten Geburtstage. Springer, Berlin (In German)

    Google Scholar 

  148. Kiessling, M. K.-H. 2003. The “Jeans swindle”. A true story—mathematically speaking. Adv. Appl. Math. 31 (1): 132-149

    MathSciNet  Google Scholar 

  149. Kittel, C. 1963. Quantum Theory of Solids. John Wiley, New York

    Google Scholar 

  150. Klimontovich, Yu. L. 1982a. Kinetic Theory of Nonideal Gases and Nonideal Plasmas. Pergamon Press, Oxford

    Google Scholar 

  151. Klimontovich, Yu. L. 1982b. Statistical physics. Nauka, Moscow (In Russian)

    Google Scholar 

  152. Klimontovich, Yu. L. 1997. Physics of Collisionless Plasma. Physics-Uspekhi 40 (1): 25-51

    ADS  Google Scholar 

  153. Kojevnikov, A. 2002. David Bohm and collective movement. Hist. Stud. Phys. Biol. Sci. 33 (1): 161-192.

    Google Scholar 

  154. Komnik, Yu. F. 1979. Physics of metallic films. Dimensional and structural effects. Atomizdat, Moscow (In Russian)

    Google Scholar 

  155. Kontorovich, V. M. 1984. Dynamic equations of the theory of elasticity of metals. Sov. Physics-Uspekhi 27 (2): 134-158

    ADS  Google Scholar 

  156. Kostyrchenko, G. V. 2003. Stalin’s Secret Policy. Power and Anti-Semitism. Mezhdunarodnye Otnosheniya, Moscow (In Russian)

    Google Scholar 

  157. Kostyrchenko, G. V. Ed. 2012. State Anti-Semitism in the USSR. From Start to Climax. 1938–1953. MFD: Materik, Moscow (In Russian)

  158. Kragh, H. 1996. Cosmology and Controversy. The Historical Development of Two Theories of the Universe. Princeton University Press, Princeton

    Google Scholar 

  159. Kragh, H. 2003. Who discovered the expanding universe? Hist. Sci. 41 (2): 141-162

    MathSciNet  Google Scholar 

  160. Kragh, H. 2015. Masters of the Universe. Conversations with Cosmologists of the Past. Oxford University Press, Oxford

    Google Scholar 

  161. Kragh, H. 2017. Eddington’s dream: A failed theory of everything, In: Ed. I. T. Durham, and D. Rickles. Information and Interaction. Eddington, Wheeler, and the Limits of Knowledge. Springer, Cham, P. 45–58.

  162. Kragh, H. S. and D. Lambert. 2007. The Context of Discovery: Lemaître and the Origin of the Primeval-Atom Universe. Ann. Sci. 64 (4): 445-470

    Google Scholar 

  163. Krall, N. A. and A. W. Trivelpiece. 1973. Principles of Plasma Physics. McGraw-Hill, New York

    Google Scholar 

  164. Kuznetsov, V. 2021. Modified structure–nominative reconstruction of practical physical theories as a frame for the philosophy of physics. Epistemological Studies in Philosophy, Social and Political Sciences. 4 (1): 20–28, https://doi.org/https://doi.org/10.15421/342103

    Article  Google Scholar 

  165. Lagendijk, A., B. van Tiggelen and D. S. Wiersma. 2009. Fifty years of Anderson localization. Phys. Today 62 (8) 24-29.

    CAS  Google Scholar 

  166. Landau, L. 1937. The kinetic equation in the case of Coulomb interaction. Zh. Eksp. Teor. Fiz. 7 (2): 203-209 (In Russian)

    CAS  Google Scholar 

  167. Landau, L. 1946. On electron plasma oscillations. Zh. Eksp. Teor. Fiz. 16 (7): 574-586 (In Russian)

    Google Scholar 

  168. Landau L. D. and E. M. Lifshitz. 1969. Statistical physics. L. D. Landau and E. M. Lifshitz Course of Theoretical Physics. Volume 5, Part 1. Third Edition, Revised and Enlarged. Pergamon, Oxford

  169. Landau L. D. and E. M. Lifshitz. 1980. The classical theory of fields. L. D. Landau and E. M. Lifshitz Course of Theoretical Physics. Volume 2. Fourth Revised English Edition. Butterworth-Heinemann, Amsterdam

  170. Landau L. D. and E. M. Lifshitz. 1987. Fluid Mechanics. L. D. Landau and E. M. Lifshitz Course of Theoretical Physics. Volume 6. Second Edition. Pergamon, Oxford

  171. Lang, N. D. 1973. The density-functional formalism and the electronic structure of metal surfaces. In: Ed. H. Ehrenreich, F. Seitz and D. Turnbull. Solid State Physics Advances in Research and Applications. Volume 28. Academic Press, New York, P. 225–300

  172. Langmuir, I. 1928. Oscillations in ionized gases. Proc. Nation. Acad. Sci. (USA) 14 (8) 627-637

    ADS  CAS  Google Scholar 

  173. Larkin, A. and A. Varlamov 2005. Theory of Fluctuations in Superconductors. Oxford University Press, Oxford

    Google Scholar 

  174. Lemaitre, G. 1931. The Expanding Universe. Month. Notices Roy. Astron. Soc. 91 (5): 490-501

    ADS  MathSciNet  Google Scholar 

  175. Lenin, V. I. 1968. Party and party literature. In: V. I. Lenin. Full Collection of Papers. Fifth edition. Volume. 12. Political Literature Publishing House, Moscow (In Russian)

  176. Lewis Carrol. 2005. Alice’s Adventures in Wonderland. Icon Classics, San Diego

    Google Scholar 

  177. Liboff, R. L. 2003. Kinetic Theory. Classical, Quantum, and Relativistic Descriptions. Third Edition. Springer, New York

    Google Scholar 

  178. Lieb, E. H. and R. Seiringe. 2009. The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  179. Lifshitz, E. 1946. On the gravitational stability of the expanding universe. Zh. Eksp. Teor. Fiz. 16 (5): 587-602 (In Russian)

    ADS  MathSciNet  Google Scholar 

  180. Lifshitz, E. 2017. Republication of: On the gravitational stability of the expanding universe. Gen. Relativ. Gravit. 49 (2): 18

    ADS  Google Scholar 

  181. Lifshitz, E. M. and I. M. Khalatnikov. 1963. Investigations in relativistic cosmology. Adv. Phys. 12 (46): 185-249

    ADS  MathSciNet  Google Scholar 

  182. Lifshitz, E. M. and L. P. Pitaevskii. 1981. Physical Kinetics. L. D. Landau and E. M. Lifshitz Course of Theoretical Physics. Volume 10. Pergamon, Oxford

  183. Lindhard, J. 1954. On the properties of a gas of charged particles. Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd. 28 (8): 1-57

    MathSciNet  Google Scholar 

  184. Logunov, A. A. and M. A. Mestvirishvili. 1989. The relativistic theory of gravitation. Mir, Moscow

    Google Scholar 

  185. Lord Kelvin. 1902. On the clustering of gravitational matter in any part of the universe. Phil. Mag. 3 (13): 1-9

    Google Scholar 

  186. Lord Kelvin. 1904. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. Clay and Sons, London

    Google Scholar 

  187. Lord Rayleigh, O. M. 1906. VII. On electrical vibrations and the constitution of the atom. Phil. Mag. 11 (61): 117-123

    Google Scholar 

  188. Lynden-Bell, D. 1962. The stability and vibrations of a gas of stars. Month. Notices Roy. Astron. Soc. 124 (4): 279-296

    ADS  MathSciNet  Google Scholar 

  189. Lyon, M. and S. L. Rolston. 2017. Ultracold neutral plasmas. Rep. Prog. Phys. 80 (1) 017001

    ADS  CAS  PubMed  Google Scholar 

  190. Maksimov, A. A., I. V. Kuznetsov, Ya. P. Terletskiy and N. F. Ovchinnikov Ed. 1952. Philosophical Issues of Modern Physics. AN SSSR, Moscow (In Russian)

    Google Scholar 

  191. Malik, K. A. and D. R. Matravers. 2019. How Cosmologists Explain the Universe to Friends and Family. Springer, Cham

    Google Scholar 

  192. Malmberg, J. H. and C. B. Wharton. 1964. Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett. 13 (6): 184-186

    ADS  Google Scholar 

  193. March, N. and M. Parrinello. 1982. Collective Effects in Solids and Liquids. Adam Hilger, Bristol

    Google Scholar 

  194. Massa, C. 1985. Strong interaction and nucleon mass. Amer. J. Phys 53 (9): 908-909

    ADS  CAS  Google Scholar 

  195. Maudlin, T. 2011. Quantum Non-Locality and Relativity. Metaphysical Intimations of Modern Physics. Third Edition. Blackwell Publishers, Oxford

    Google Scholar 

  196. Mayer, J. E. and M. Goeppert Mayer. 1977. Statistical Mechanics. Second Edition. Wiley-Interscience, New York

    Google Scholar 

  197. Mazo, R. M. 2002. Brownian Motion. Fluctuations, Dynamics and Applications. Clarendon Press, Oxford

    Google Scholar 

  198. McCrea, W. H. and E. A. Milne. 1934. Newtonian Universes and the curvature of space. Quart J. Math. 5 (1): 73-80

    ADS  Google Scholar 

  199. Mensky, M. B. 2010. Consciousness and Quantum Mechanics. Life in Parallel Worlds. Miracles of Consciousness from Quantum Reality. World Scientific Publishing Company, Singapore

    Google Scholar 

  200. Milonni, P. W. 2019. An Introduction to Quantum Optics and Quantum Fluctuations. Oxford University Press, Oxford

    Google Scholar 

  201. Misner, C. W., K. S. Thorne, and J. A. Wheeler. 1973. Gravitation. W. H. Freeman, San Francisco

    Google Scholar 

  202. Mitrokhin, N. 2003. Russian Party. The Movement of Russian Nationalists in the USSR. 1953-1985. Novoe Literaturnoe Obozrenie, Moscow (In Russian)

    Google Scholar 

  203. Møller, C. 1955. Theory of Relativity. Oxford University Press, Oxford

    Google Scholar 

  204. Mouhot, C. and C. Villani. 2011. On Landau damping. Acta Math. 207 (1): 29-201

    MathSciNet  Google Scholar 

  205. Mukhin, K. N., A. F. Sustavov and V. N. Tikhonov. 2006. Russian Physics of the Nobel Level. Fizmatlit, Moscow (In Russian)

    Google Scholar 

  206. Nadzhafov, D. G. Ed. 2005. Stalin and Cosmopolitanism. Documents of Agitprop of the Central Committee of the CPSU. 1945-1953. MFD: Materik, Moscow (In Russian)

  207. Naimark, N. M. 2011. Stalin Genocides. Publishing house: “Kyiv-Mohyla Academy”, Kyiv (in Ukrainian)

  208. Naselsky, P. D., D. I. Novikov and I. D. Novikov. 2006. The Physics of the Cosmic Microwave Background. Cambridge University Press, Cambridge

    Google Scholar 

  209. Nekrich, A. M. 1978. The Punished Peoples. The Deportation and Tragic Fate of Soviet Minorities at the End of the Second World War. WW Norton & Co, New York

    Google Scholar 

  210. Newton, I. 2004. Letter 1 to Richard Bentley. In Ed. A. Janiak. I. Newton, Philosophical Writings. Cambridge University Press, Cambridge, P. 94-95

    Google Scholar 

  211. Nicolis, G. and I. Prigogine. 1977. Self-Organization in Non-Equilibrium Systems. John Wiley & Sons, New York

    Google Scholar 

  212. Norton, J. D. 1999. The cosmological woes of Newtonian gravitation theory. In: H. Goenner, J. Renn, J. Ritter and T. Sauer. Ed. The Expanding Worlds of General Relativity: Einstein Studies, Volume 7. Birkhäuser, Boston, 1999, P. 271-323

    Google Scholar 

  213. Novikov, I. D. 1990. Evolution of the Universe. Nauka, Moscow, P. 127-132 (In Russian)

    Google Scholar 

  214. O’Raifeartaigh, C., M. O’Keeffe, W. Nahm and S. Mitton. 2017. Einstein’s 1917 static model of the universe: a centennial review. Eur. Phys. J. H 42 (3): 431-474

    Google Scholar 

  215. O’Raifeartaigh, C., M. O’Keeffe, W. Nahm and S. Mitton. 2018. One hundred years of the cosmological constant: from “superfluous stunt” to dark energy. Eur. Phys. J. H 43 (1) 73-117

    Google Scholar 

  216. Orlov, A. 1953. The Secret History of Stalin's Crimes. Random House, New York

    Google Scholar 

  217. Pais, A. 1982. Subtle is the Lord. The Science and the Life of Albert Einstein. Oxford University Press, Oxford

    Google Scholar 

  218. Peebles, P. J. E. 2020. Cosmology’s Century. Princeton University Press, Princeton

    Google Scholar 

  219. Perlov, D. and A. Vilenkin. 2017. Cosmology for the Curious. Springer, Cham

    Google Scholar 

  220. Pesceli, H. L. 2000. Fluctuations in Physical Systems. Cambridge University Press, Cambridge

    Google Scholar 

  221. Pines, D. and Ph. Nozières. 2018. Theory of Quantum Liquids. Volume I. Normal Fermi Liquids. CRC, Boca Raton

  222. Popov, V. Yu. and V. P. Silin. 2014. Vlasov modes in the theory of ion-acoustic turbulence. Plasma Phys. Rep. 40 (4): 298-305

    ADS  Google Scholar 

  223. Rabinowitch, A. 2009. The Bolsheviks Come to Power. The Revolution of 1917 in Petrograd. W. W. Norton & Co, New York

    Google Scholar 

  224. Rapoport, Ya. L. 1988. At the Turn of Two Epochs. The 1953 Doctor Affair. Kniga, Moscow (In Russian)

    Google Scholar 

  225. Roberts, J. K. and A. R. Miller. 1960. Heat and thermodynamics. Interscience Publishers, New York

    Google Scholar 

  226. Rodríguez-Vellando, P. 2019. …and so Euler discovered Differential Equations. Found. Sci. 24 (2): 343-374

    MathSciNet  Google Scholar 

  227. Rukhadze, A. A. 2010. Events and People. Fifth Edition, Revised and Enlarged. Nauchtekhlitizdat, Moscow (In Russian)

  228. Rukhadze, A. A. and V. P. Silin. 2019. From Lord Rayleigh to Professor A. A. Vlasov (from 1906 to 1945). Physics-Uspekhi. 62 (7): 691-698

    ADS  CAS  Google Scholar 

  229. Rumer, M. Sh. and Yu. B. Ryvkin. 1980. Thermodynamics, Statistical Physics, and Kinetics. Mir, Moscow

    Google Scholar 

  230. Ryden, B. 2017. Introduction to Cosmology. Second Edition. Cambridge University Press, Cambridge

    Google Scholar 

  231. Ryutov, D. D. 1999. Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion 41 (3A): A1-A12

    ADS  CAS  Google Scholar 

  232. Sagan, D. 1994. On the physics of Landau damping. Amer. J. Phys. 62 (5): 450-462

    ADS  Google Scholar 

  233. Sanders, R. H. 2016. Deconstructing Cosmology. Cambridge University Press, Cambridge

    Google Scholar 

  234. Sardanashvili, G. A. 2009. Dmitry Ivanenko – Superstar of Soviet Physics: An Unwritten Memoir. URSS, Moscow (In Russian)

    Google Scholar 

  235. Shafranov, V. D. 1967. Electromagnetic waves in a plasma. In: Acad. M. A. Leontovich. Ed. Reviews of Plasma Physics. Volume 3. Consultants Bureau, New York, P. 1-157

  236. Shankland, R. S. 1964. Michelson-Morley experiment. Amer. J. Phys. 32 (1): 16-35

    ADS  MathSciNet  Google Scholar 

  237. Shkarofsky, I. P., T. W. Johnston, and M. P. Bachynski. 1966. The Particle Kinetics of Plasma. Addison-Wesley, Reading, MA

    Google Scholar 

  238. Shockley, W. and J Bardeen. 1950. Energy bands and mobilities in monatomic semiconductors. Phys. Rev. 77 (3): 407-408

    ADS  Google Scholar 

  239. Silin, V. P. 1971. Introduction to the Kinetic Theory of Gases. Nauka, Moscow (In Russian)

    Google Scholar 

  240. Silin, V. P. 2012. Ion-acoustic turbulence in plasmas. Ukr. J. Phys. 57 (3): 322-329

    CAS  Google Scholar 

  241. Silin, V. P. 2013. Landau damping of plasma waves. Plasma Phys. Rep. 39 (13): 1055-1059

    ADS  Google Scholar 

  242. Silin, V. P. 2014. Myth about the error by A. A. Vlasov and about his book of 1945. Bull. Lebedev Phys. Inst. 41 (4): 103-109

    ADS  Google Scholar 

  243. Silin, V. P. and A. A. Rukhadze. 1961. Electromagnetic Properties of Plasma and Plasma-Like Media. Gosatomizdat, Moscow (In Russian)

  244. Sitenko, A. 1967. Electromagnetic Fluctuations in Plasma. Academic Press, New York

    Google Scholar 

  245. Smirnov, B. M. 2006. Principles of Statistical Physics. Distributions, Structures, Phenomena, Kinetics of Atomic Systems. Wiley-VCH, Weinheim

    Google Scholar 

  246. Smirnov, B. M. 2015. Theory of Gas Discharge Plasma. Springer, Cham, 2015

    Google Scholar 

  247. Sonar, T. 2018. The History of the Priority Dispute between Newton and Leibniz. Mathematics in History and Culture. Birkhäuser, Cham

    Google Scholar 

  248. Sonin, A. S. 1994. Physical Idealism. The History of One Ideological Campaign. Nauka, Moscow (In Russian)

    Google Scholar 

  249. Sonin, A. S. 2011. Fight Against Cosmopolitanism in Soviet Science. Nauka, Moscow (In Russian)

    Google Scholar 

  250. Sorokin, Yu. N. 1955. Alexander Fedorovich Mozhaiskiy – Creator of the First Airplane. Collection of Documents. AN SSSR, Moscow (In Russian)

    Google Scholar 

  251. Spiegel, E. A. 1999. Gravitational screening. In: Ed. A. Harvey. On Einstein’s Path. Essays in Honor of Engelbert Schucking. Springer, New York, P. 465-474

    Google Scholar 

  252. Stenographic Report of the VASKhNIL Session July 31 – August 7, 1948: On the Situation in Biological Science. 1948. OGIZ-SEL’KHOZGIZ, Moscow (In Russian)

  253. Suvorov, S. G. 1969. On certain epistemological problems in physics. Sov. Physics-Uspekhi 12 (3): 359-377

    ADS  Google Scholar 

  254. Thiele, R. 1982. Leonhard Euler. Teubner, Wiesbaden (In German)

    Google Scholar 

  255. Thomson, J. J. 1904. XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Phil. Mag. 7 (39): 237-265

    CAS  Google Scholar 

  256. Thorne, K. S. 2019. LIGO and gravitational Waves, III: Nobel lecture, December 8, 2017, Ann. Phys. (Berlin) 531 (1) 1800350

    ADS  Google Scholar 

  257. Tolman, R. C. 1949. Relativity, Thermodynamics, and Cosmology. Clarendon Press, Oxford

    Google Scholar 

  258. Tonks, L. and I. Langmuir. 1929. Oscillations in ionized gases. Phys. Rev. 33 (2): 195-210

    ADS  CAS  Google Scholar 

  259. Tyapkin, A. A. 1972. Expression of the general properties of physical processes in the space-time metric of the special theory of relativity. Sov. Physics-Uspekhi 15 (2): 205-229

    ADS  Google Scholar 

  260. Van Kampen, N. G. 1955. On the theory of stationary waves in plasmas. Physica 21 (6-10): 949-963

    ADS  MathSciNet  Google Scholar 

  261. Van Kampen, N. G. 1957. Dispersion equation for plasma waves. Physica 23 (7): 641-650

    ADS  MathSciNet  Google Scholar 

  262. Vedenyapin, V. V. 2001. Boltzmann and Vlasov Kinetic Equations. Fizmatlit, Moscow (In Russian)

    Google Scholar 

  263. Vizgin, V. P. 2001. On the discovery of the gravitational field equations by Einstein and Hilbert: new materials. Physics-Uspekhi 44 (12): 1283-1298

    ADS  Google Scholar 

  264. Vladimirov, S.V. and K. Ostrikov. 2004. Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects. Phys. Rep. 393 (3-6): 175–380

    ADS  CAS  Google Scholar 

  265. Vlasov, A. A. 1938. On vibrational properties of electron gas. Zh. Eksp. Teor. Fiz. 8 (3): 291-318 (In Russian)

    CAS  Google Scholar 

  266. Vlasov, A. A. 1950. Many Particle Theory. GITTL, Moscow (In Russian)

    Google Scholar 

  267. Vlasov, A. A. 1966. Statistical Distribution Functions. Nauka, Moscow (In Russian)

    Google Scholar 

  268. Vlasov, A. A. 1978. Nonlocal Statistical Mechanics. Nauka, Moscow (In Russian)

    Google Scholar 

  269. Weinberg, S. 2008. Cosmology. Oxford University Press, Oxford

    Google Scholar 

  270. Weiss, R. 2019. LIGO and gravitational Waves, I: Nobel lecture, December 8, 2017, Ann. Phys. (Berlin) 531 (1) 1800349

    ADS  Google Scholar 

  271. Will, C. M. 2018. Theory and experiment in gravitational physics. Cambridge University Press, Cambridge

    Google Scholar 

  272. Will, C. M. and N. Yunes 2020. Is Einstein Still Right? Oxford University Press, Oxford

    Google Scholar 

  273. Yakovenko, N. 2007. Introduction to History. Krytyka, Kyiv (In Ukrainian)

    Google Scholar 

  274. Yakovlev, A. N. Ed. 2002. Drama of Russian History. Bolsheviks and Revolution. New Chronograph, Moscow (In Russian)

    Google Scholar 

  275. Yaroshevskiy, M. G. Ed. 1991. Repressed Science. Issue I. Nauka, Leningrad (In Russian)

    Google Scholar 

  276. Yaroshevskiy, M. G. Ed. 1994. Repressed Science. Issue II. Nauka, St. Petersburg (In Russian)

    Google Scholar 

  277. Yukawa, H. 1949. Models and methods in the meson theory. Rev. Mod. Phys. 21 (3): 474-479

    ADS  Google Scholar 

  278. Zangwill, A. 2021. A Mind Over Matter. Philip Anderson and the Physics of the Very Many. Oxford University Press, Oxford

    Google Scholar 

  279. Zel’dovich, Ya. B. and I. D. Novikov. 1983. Relativistic Astrophysics. Volume 2. The Structure and Evolution of the Universe. University of Chicago Press, Chicago, P. 237–309.

Download references

Acknowledgements

We would like to thank the Ukrainian Armed Forces and our Western allies, who made possible the preparation of this paper. Alexander Gabovich is supported by Grant No. 1.4.B-197 of the Institute of Physics of the National Academy of Sciences of Ukraine. He is also grateful to the Max Planck Institute for the Physics of Complex Systems for the invitation to Dresden and Joint Ukrainian-Polish program (2022–2024), Grant No. 23. Vladimir Kuznetsov is supported by the Project Logical, Ontological and Axiological Dimensions of Scientific Cognition of the Program Priorities Directions of Scientific Studies of the National Academy of Sciences of Ukraine (2021). The preliminary version of this article was published in Russian in the International Network Journal 7 iskusstv (7i.7iskusstv.com/y2022/nomer5/gabovich/). We are very grateful to Evgeniy Berkovich, who gave us this platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Kuznetsov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabovich, A.M., Kuznetsov, V.I. Anatoly Vlasov heritage: 60-year-old controversy. EPJ H 48, 5 (2023). https://doi.org/10.1140/epjh/s13129-023-00051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjh/s13129-023-00051-6

Navigation