Skip to main content

Advertisement

SpringerLink
  1. Home
  2. The European Physical Journal H
  3. Article
Stellar equilibrium vs. gravitational collapse
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Comments on stellar evolution

19 September 2018

Mounib F. El Eid

On Uniformly Rotating Binary Stars and Galaxies

28 March 2022

Juhi Jang & Jinmyoung Seok

A parametric model to study the mass–radius relationship of stars

01 February 2019

Safiqul Islam, Satadal Datta & Tapas K Das

On the mass of supernova progenitors

26 September 2018

Oscar Straniero

Some Results on Newtonian Gaseous Stars—Existence and Stability

01 January 2019

Tao Luo

Radial oscillations and tidal Love numbers of dark energy stars

22 October 2020

Grigorios Panotopoulos, Ángel Rincón & Ilídio Lopes

Turning Point Principle for Relativistic Stars

12 September 2021

Mahir Hadžić & Zhiwu Lin

Three-Dimensional Stationary Spherically Symmetric Stellar Dynamic Models Depending on the Local Energy

01 September 2022

J. Batt, E. Jörn & A. L. Skubachevskii

Dynamics of young stellar clusters as planet-forming environments

20 September 2022

Megan Reiter & Richard J. Parker

Download PDF
  • Open Access
  • Published: 11 February 2020

Stellar equilibrium vs. gravitational collapse

  • Carla Rodrigues Almeida1 

The European Physical Journal H volume 45, pages 25–48 (2020)Cite this article

  • 651 Accesses

  • 4 Citations

  • Metrics details

Abstract

The idea of gravitational collapse can be traced back to the first solution of Einstein’s equations, but in these early stages, compelling evidence to support this idea was lacking. Furthermore, there were many theoretical gaps underlying the conviction that a star could not contract beyond its critical radius. The philosophical views of the early 20th century, especially those of Sir Arthur S. Eddington, imposed equilibrium as an almost unquestionable condition on theoretical models describing stars. This paper is a historical and epistemological account of the theoretical defiance of this equilibrium hypothesis, with a novel reassessment of J.R. Oppenheimer’s work on astrophysics.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Adams, J.B. et al. 1958. Some Implications of General Relativity for the Structure and Evolution of the Universe. InSolvay Conference 1958: 97–148. R. Stoops.

  2. Alpher, R.A. et al. 1948. The origin of chemical elements.Physical Review73: 803–804.

    ADS  Google Scholar 

  3. Baade, W. and Zwicky, F. 1934. Supernovae and cosmic rays.Minutes of the Stanford Meeting. Physical Review45: 138.

    Google Scholar 

  4. Bethe, H. 1939. Energy production in stars.Physical Review55: 434–456.

    ADS  MATH  Google Scholar 

  5. Birkhoff, G.D. 1923.Relativity and Modern Physics. Cambridge: Harvard University Press.

  6. Blum, A.S. et al. 2016. The renaissance of general relativity : how and why it happened.Annalen der Physik528: 344–349.

    ADS  MathSciNet  Google Scholar 

  7. Bohr, N. and Wheeler, J.A. 1939. The mechanism of nuclear fission.Physical Review56: 426–450.

    ADS  MATH  Google Scholar 

  8. Bonolis, L. 2017. Stellar structure and compact objects before 1940 : Towards relativistic astrophysics.European Physical Journal H. 42: 311–393.

    ADS  Google Scholar 

  9. Chandrasekhar, S. 1931a. The Maximum Mass of Ideal White Dwarfs.Astrophysical Journal74: 81–82.

    ADS  MATH  Google Scholar 

  10. Chandrasekhar, S. 1931b. The highly collapsed configurations of stellar mass.Monthly Notices of the Royal Astronomical Society91: 456–466.

    ADS  MATH  Google Scholar 

  11. Chandrasekhar, S. 1935. The highly collapsed configurations of a stellar mass (second paper).Monthly Notices of the Royal Astronomical Society95: 207–225.

    ADS  MATH  Google Scholar 

  12. Dingle, H. 1937a. Modern Aristotelianism.Nature: 784–786.

  13. Dingle, H. 1937b.Through Science to Philosophy. Oxford: The Clarendon Press.

  14. Droste, J. 1917. The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field.Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings Series B Physical Sciences19: 197–215.

    ADS  Google Scholar 

  15. Earman, J. 1999. The Penrose-Hawking Singularity Theorems: History and Implications. InThe Expanding Worlds of general Relativity, eds. H. Goenner; J. Renn; T. Sauer: 235–267. New York: Birkhuse.

  16. Eddington, A.S. 1920a.Space Time and Gravitation. Cambridge: Cambridge University Press.

  17. Eddington, A.S. 1920b. The internal constitution of the stars.ScienceLII(1341): 232–240.

    ADS  Google Scholar 

  18. Eddington, A.S. 1924a. A comparison of Whitehead’s and Einstein’s formulæ.Nature113: 192.

    ADS  Google Scholar 

  19. Eddington, A.S. 1924b. On the relation between the masses and luminosities of stars.Monthly Notices of the Royal Astronomical Society84: 308–332.

    ADS  Google Scholar 

  20. Eddington, A.S. 1926.On the Internal Constitution of the Stars. Cambridge: Cambridge University Press.

  21. Eddington, A.S. 1927.The Nature of the Physical World. Cambridge: Cambridge University Press.

  22. Eddington, A.S. 1935. Relativistic degeneracy.Monthly Notices of the Royal Astronomical Society95: 194–206.

    ADS  MATH  Google Scholar 

  23. Einstein, A. and Rosen, N. 1935. The particle problem in the general theory of relativity.Physical Review48: 73–77.

    ADS  MATH  Google Scholar 

  24. Einstein, A. 1939. On a stationary system with spherical symmetry consisting of many gravitating masses.Annals of Mathematics40: 922–936.

    ADS  MathSciNet  MATH  Google Scholar 

  25. Eisenstaedt, J. 1982. Histoire et singularités de la solution de Schwarzschild 1915–1923.Archive for History of Exact Science27: 157–198.

    ADS  MathSciNet  MATH  Google Scholar 

  26. Eisenstaedt, J. 1986. La relativité générale à l’étiage: 1925–1955.Archive for History of Exact Sciences35: 115–185.

    ADS  MathSciNet  MATH  Google Scholar 

  27. Eisenstaedt, J. 1993. Lemaître and the Schwarzschild Solution.In Third International Conference on the History and Philosophy of General Relativity5, eds. J. Earman; M. Jassen; J.D. Norton: 353–389. Boston: Birkhäuser.

  28. Finkelstein, D. 1958. Past-future assymetry of the gravitational field of a point particle.Physical Review110: 965–967.

    ADS  MATH  Google Scholar 

  29. Fortun, M. and Schweber, S.S. 1993. Scientists and the legacy of World War II: The case of operations research (OR).Social Studies of Science23: 595–642.

    Google Scholar 

  30. Fowler, R.H. and Milne, E.A. 1923. The intensities of absorption lines in stellar spectra, and the temperatures and pressures in the reversing layers of star.Monthly Notices of the Royal Astronomical Society83: 403–424.

    ADS  Google Scholar 

  31. Fowler, R.H. 1926. On dense matter.Monthly Notices of the Royal Astronomical Society87: 114–122.

    ADS  MATH  Google Scholar 

  32. Fronsdal, C. 1959. Completion and embedding of the Schwarzschild solution.Physical Review116: 778–781.

    ADS  MathSciNet  MATH  Google Scholar 

  33. Gullstrand, A. 1921. Allgemeine Lösung des Statischen Einkörperproblem in der Einsteinschen Gravitationstheorie.Arkiv för Matematik, Astronomi och Fysik16: 1–15.

    Google Scholar 

  34. Hagihara, Y. 1931. Theory of the relativistic trajectories in a gravitational field of Schwarzschild.Japanese Journal of Astronomy and Geophysics8: 67–176.

    ADS  MATH  Google Scholar 

  35. Howard, Don A. 2005. Albert Einstein as a philosopher of science.Physics Today58: 34–40.

    ADS  Google Scholar 

  36. Hoyle, F. 1946. The synthesis of the elements from hydrogen.Monthly Notices of the Royal Astronomical Society106: 343–383.

    ADS  Google Scholar 

  37. Hoyle, F. 1954. On nuclear reactions occuring in very hot stars I. The synthesis of elements from carbon to nickel.Astrophysical Journal Supplement1: 121–146.

    ADS  Google Scholar 

  38. Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae.Proceedings of the National Academy of Sciences of the United States of America15: 168–173.

    ADS  MATH  Google Scholar 

  39. Hufbauer, K. 2005. J. Robert Oppenheimer’s path to Black Holes. InReappraising Oppenheimer: Centenial Studies and Reflections, eds. C. Carson and D.A. Hollinger: 31–47. Berkley: Office Papers in History of Science and Technology.

  40. Israel, W. 1987. Dark stars: the evolution of an idea.In Three Hundred Years of Gravitation, eds. Werner Israel; Stephen Hawking: 199–276. Cambridge: Cambridge University Press.

  41. Kruskal, M.D. 1960. Maximal extension of Schwarzschild metric.Physical Review119: 1743–1745.

    ADS  MathSciNet  MATH  Google Scholar 

  42. Lambert, D. 2015. The Atom of the Universe — The Life and Work of George Lemaître. Kraków: Copernicus Center Press.

  43. Landau, L. 1932. On the theory of stars.Physikalische Zeitschrift Sowjetunion1: 285–288.

    MATH  Google Scholar 

  44. Landau, L. 1975. On the theory of stars. InNeutron Stars, Black Holes and Binary X-ray Sources, eds. H. Gursky and R. Ruffini: 271–273. Netherlands: Springer.

  45. Lemaître, G. 1933. L’univers en expansion.Annales de la Société Scientifique de BruxellesA53: 51–85.

    ADS  MATH  Google Scholar 

  46. Lemaître, G. 1997. The expanding universe.General Relativity and Gravitation29, Issue 5: 641–680. Translated by M.A.H. MacCallum.

    ADS  MathSciNet  Google Scholar 

  47. Mehra, J. 1975. The Solvay Conferences on Physics: Aspects of the Development of Physics since 1911. Boston: D. Reidel Publishing Company.

  48. Milne, E.A. 1930. The analysis of stellar structure.Monthly Notices of the Royal Astronomical Society91: 4–55.

    ADS  MATH  Google Scholar 

  49. Oppenheimer, J.R. and Serber, R. 1938. On the stability of stellar neutron cores.Physical Review54: 540.

    ADS  Google Scholar 

  50. Oppenheimer, J.R. and Volkoff, G.M. 1939a. On massive neutron cores.Physical Review55: 374–381.

    ADS  MATH  Google Scholar 

  51. Oppenheimer, J.R. and Snyder, H. 1939b. On continued gravitational contraction.Physical Review56: 455–459.

    ADS  MathSciNet  MATH  Google Scholar 

  52. Orthega-Rodríguez, M. et al. 2017. The early scientific constributions of J. Robert Oppenheimer: Why did the scientific community miss the black hole opportunity?Physics in Perspective: 60–75.

  53. Painlevé, P. 1921. La Mécanique Classique et la Théorie de la Relativité.Académie de Sciences: 6–9.

  54. Robertson, H.P. and Noonan, T.W. 1968. Relativity and Cosmology. Washington: W. B. Saunders Company.

  55. Schwarzschild, K. 1900. Ueber das Zulaessige Kruemmungsmaass des Raumes.Vierteljahrschrift d. Astronom. Gesellschaft35: 337–347.

    Google Scholar 

  56. Schwarzschild, K. 1916a. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie.Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin: 189–196.

  57. Schwarzschild, K. 1916b. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Eisnteinschen Theorie.Sitzungsberichte der königlich Preussischen Akademie der Wissenschaften zu Berlin24: 424–434.

    MATH  Google Scholar 

  58. Schwarzschild, K. 1998. On the permissible curvature of space.Classical and Quantum Gravity15: 2539–2544.

    ADS  MathSciNet  MATH  Google Scholar 

  59. Schwarzschild, K. 1999. On the gravitational field of a mass point according to Einstein’s theory. https://arXiv:physics/9905030[physics.hist-ph], Translation by S. Antoci and A. Loinger.

  60. Schwarzschild, K. 2008. On the gravitational field of a sphere of incompressible liquid, according to Einstein’s theory.The Abraham Zelmanov Journal1: 10–19. Translation by Larissa Borissova and Dmitri Rabounski.

    Google Scholar 

  61. Synge, J.L. 1950. The gravitational field of a particle.Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences53: 83–114.

    MathSciNet  Google Scholar 

  62. Szekeres, G. 1960. On the singularities of a Riemannian manifold.Publicationes Mathematicae Debrecen7: 285–301.

    MathSciNet  MATH  Google Scholar 

  63. Thorne, K. 1994.Black Holes & Time Warps: Einstein’s outrageous legacy. New York: W.W. Norton Company.

  64. Tolman, R.C. 1934a. Effect of inhomogeneity on cosmological models.Proceedings of the National Academy of Science20: 169–176.

    ADS  MATH  Google Scholar 

  65. Tolman, R.C. 1934b.Relativity, Thermodynamics and Cosmology. New York: Dover Publications.

  66. Wheeler, J.A. and Ford, K. 1998.Geons, Black Holes, and Quantum Foam: a life in Physics. New York: W. W. Norton Company.

  67. Whitehead, A.N. 1922.The principle of relativity with applications to physical science. Cambridge: Cambridge University Press.

  68. Zwicky, F. 1938. On collapsed neutron stars.Astrophysical Journal88: 522–525.

    ADS  Google Scholar 

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Authors and Affiliations

  1. Department I Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195, Berlin, Germany

    Carla Rodrigues Almeida

Authors
  1. Carla Rodrigues Almeida
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Carla Rodrigues Almeida.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues Almeida, C. Stellar equilibrium vs. gravitational collapse. EPJ H 45, 25–48 (2020). https://doi.org/10.1140/epjh/e2019-100045-x

Download citation

  • Received: 26 September 2019

  • Revised: 12 December 2019

  • Published: 11 February 2020

  • Issue Date: July 2020

  • DOI: https://doi.org/10.1140/epjh/e2019-100045-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.