Skip to main content

Advertisement

Log in

Comments on stellar evolution

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Given the limited space in this contribution, it is not possible to go into the details of the exciting astrophysical topic of stellar evolution and nucleosynthesis. It is attempted to emphasize the basics of this basic concept of the hydrostatic evolution of stars as they are driven by the interplay between gravity and nuclear energy generation, which is expressed by the virial theorem. In the case of massive stars roughly above \( 8 {\rm M}_{\odot}\), the breakdown of the hydrostatic evolution, due to the lack of nuclear energy generation, leads to gravitational collapse followed either by a successful supernova explosion, leaving a neutron star behind, or by a black hole, which is the ultimate end stage. The stars of masses in the lower mass range end their evolution as white dwarfs. The nucleosynthesis process in stars is a complex task. Most of the elements and their isotopes, especially the heavy elements, are produced in an explosive environment, or in the late stages of the asymptotic giant branch stars. The present paper will concentrate mainly on the evolutionary aspects, due to the to limited space given here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Iben Jr., A. Renzini, Phys. Rep. 105, 329 (1984)

    Article  ADS  Google Scholar 

  2. M.F. El Eid, Astron. Astrophys. 285, 915 (1994)

    ADS  Google Scholar 

  3. K. Nomoto, M. Hashimoto, Phys. Rep. 163, 13 (1988)

    Article  ADS  Google Scholar 

  4. J. Jose, G. Hallabi, M.F. El Eid, Astron. Astrophys. 593, A54 (2016)

    Article  ADS  Google Scholar 

  5. V. Bromm et al., Nature 459, 49B (2009)

    Article  ADS  Google Scholar 

  6. W.W. Ober, M.F. El Eid, K.J. Fricke, Astron. Astrophys. 119, 61 (1983)

    ADS  Google Scholar 

  7. A. Heger, S.E. Woosley, Astrophys. J. 567, 532 (2002)

    Article  ADS  Google Scholar 

  8. V. Bromm et al., Nature 459, 29 (2009)

    Article  ADS  Google Scholar 

  9. Gal-Yam et al., Nature 462, 579 (2009)

    Article  Google Scholar 

  10. R. Kippenhahn, A. Wegert, Stellar Structure and Evolution (Springer Verlag, Berlin, 1990)

  11. F.J. Roger, C.A. Iglesias, Astrophys. J. Suppl. 79, 507 (1992)

    Article  ADS  Google Scholar 

  12. O. Straniero et al., ASP Conf. Ser. 497, 259 (2015)

    ADS  Google Scholar 

  13. F. Herwig et al., Astron. Astrophys. 324, L81 (1997)

    ADS  Google Scholar 

  14. L. Deng, D.R. Xiong, Mon. Not. R. Astron. Soc. 386, 1979 (2008)

    Article  ADS  Google Scholar 

  15. B. Freytag et al., Astron. Astrophys. 313, 497 (1996)

    ADS  Google Scholar 

  16. B.W. Carroll, D.A. Ostile, An Introduction to Modern Astrophysics (Pearson, New York, 2007)

  17. B. Paczynski, M. Rozyczka, Acta Astron. 25, 213 (1977)

    ADS  Google Scholar 

  18. M.F. El Eid, L.-S. The, B.S. Meyer, Space Sci. Rev. 147, 1 (2009)

    Article  ADS  Google Scholar 

  19. F. Herwig, Annu. Rev. Astron. Astrophys. 43, 435 (2005)

    Article  ADS  Google Scholar 

  20. M. Busso et al., Annu. Rev. Astron. Astrophys. 37, 239 (1999)

    Article  ADS  Google Scholar 

  21. C. Sneden, J.J. Cowan, R. Gallino, Annu. Rev. Astron. Astrophys. 46, 241 (2008)

    Article  ADS  Google Scholar 

  22. S. Jones et al., Mon. Not. R. Astron. Soc. 455, 3848 (2015)

    Article  ADS  Google Scholar 

  23. G.M. Halabi, M.F. El Eid, A. Champgane, Astrophys. J. 761, 10 (2012)

    Article  ADS  Google Scholar 

  24. M. Salaris, S. Cassisi, Evolituon of Stars and Stellar populations (Wiley:Chichester West Sussex, UL, 2008)

  25. A.-J. Lai, Y. Li, Res. Astron. Astophys. 11, 1351 (2011)

    Article  ADS  Google Scholar 

  26. R.J. de Boer, arXiv:1709.03144v1 (2107)

  27. M. Kunz et al., Astrophys. J. 567, 643 (2002)

    Article  ADS  Google Scholar 

  28. M. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  29. G. Imbtriani et al., Astrophys. J. 558, 903 (2001)

    Article  ADS  Google Scholar 

  30. G.R. Caughlan et al., At. Data Nucl. Data Tables 32, 197 (1985)

    Article  ADS  Google Scholar 

  31. G.R. Caughlan et al., At. Data Nucl. Data Tables 40, 283 (1985)

    Article  ADS  Google Scholar 

  32. L.-S. The, M.F. El Eid, B.S. Meyer, Astrophys. J. 655, 1058 (2007)

    Article  ADS  Google Scholar 

  33. F.K. Thielemann et al., Annu. Rev. Nucl. Part. Sci. 67, 253 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounib F. El Eid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Eid, M.F. Comments on stellar evolution. Eur. Phys. J. Plus 133, 372 (2018). https://doi.org/10.1140/epjp/i2018-12236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12236-2

Navigation