Advertisement

The European Physical Journal H

, Volume 44, Issue 3, pp 181–270 | Cite as

Gravitation and general relativity at King’s College London

  • D. C. RobinsonEmail author
Open Access
Article

Abstract

This essay concerns the study of gravitation and general relativity at King’s College London (KCL). It covers developments since the nineteenth century but its main focus is on the quarter of a century beginning in 1955. At King’s research in the twenty-five years from 1955 was dominated initially by the study of gravitational waves and then by the investigation of the classical and quantum aspects of black holes. While general relativity has been studied extensively by both physicists and mathematicians, most of the work at King’s described here was undertaken in the mathematics department.

References

  1. 1.
    Abbott B.P. et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016. Observation of gravitational waves from binary black hole merger. Physical Review Letters 116: 061102 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Adams W.G. 1871. Report of Professor W.G. Adams on observations of the eclipse of December 22, 1870, made at Augusta, in Sicily. Monthly Notices of the Royal Astronomical Society 31: 155–161. CrossRefADSGoogle Scholar
  3. 3.
    Alessio F., Esposito G. 2018. On the structure and applications of the Bondi-Metzner-Sachs Group. International Journal of Geometric Methods in Modern Physics 15: 1830002 CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Anon. 1921. Prof. Einstein’s Lectures at King’s College, London and the University of Manchester. Nature 107: 504 Google Scholar
  5. 5.
    Arnowitt R., Deser S., Misner C.W. 1962. The Dynamics of General Relativity. In Witten, pp. 227–265 Google Scholar
  6. 6.
    Ashtekar A., Berger B.K., Isenberg J., MacCallum M. 2015. General Relativity and Gravitation: A Centennial Perspective. Cambridge, Cambridge University Press Google Scholar
  7. 7.
    Atiyah M., Dunajski M., Mason L.J. 2017, Twistor theory at fifty: from contour integrals to twistor strings. Proceedings of the Royal Society A 473: 2017.0530. CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Baldwin O.R., Jeffery G.B. 1926. The relativity theory of plane waves. Proceedings of the Royal Society of London A 111: 95–104 CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Bambi C. 2019. Astrophysical black holes: a review. arXiv:1906.03871 [astro-ph]
  10. 10.
    Barbour J.B., Pfister H. Eds. 1995. Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Boston, Birkhäuser Google Scholar
  11. 11.
    Beck G. 1925. Zur theorie binärer gravitationsfelder. Zeitschrift für Physik 33: 713–728 CrossRefADSzbMATHGoogle Scholar
  12. 12.
    Bell Burnell S.J. 1977. Petit Four. Annals of the New York Academy of Sciences 302: 685–689 CrossRefADSGoogle Scholar
  13. 13.
    Bekenstein J.D. 1973. Black holes and entropy. Physical Review D 7: 2333–2346 CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Birrell N.D., Davies P.C.W. 1982. Quantum Fields in Curved Space. Cambridge, Cambridge University Press Google Scholar
  15. 15.
    Blum A., Giulini D., Lalli R., Renn J. 2017. Editorial introduction to the special issue “The Renaissance of Einstein’s Theory of Gravitation”. European Physical Journal H 42: 95–105 CrossRefADSGoogle Scholar
  16. 16.
    Blum A., Lalli R., Renn J. 2018. Gravitational waves and the long relativity revolution. Nature Astronomy 2: 534–543 CrossRefADSGoogle Scholar
  17. 17.
    Blum A., Lalli R., Renn J. 2015. The reinvention of general relativity: a historiographical framework for assessing one hundred years of curved space-time. Isis 106: 598–620 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Blum A., Rickles D. Eds. 2018. Quantum Gravity in the First Half of the Twentieth Century. Berlin, Edition Open Sources. Google Scholar
  19. 19.
    Blyth W.F., Isham C.J. 1975. Quantization of a Friedman Universe filled with a scalar field. Physical Review D 11: 768–778. CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Bogoliubov N.N., Tolmachev V.V., Shirkov D.V. 1959. A New Method in the Theory of Superconductivity. New York, Consultants Bureau New York. Google Scholar
  21. 21.
    Bondi H. 1942. On the generation of waves on shallow water by wind. Proceedings of the Royal Society of London A 181: 67–71 CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Bondi H. 1947. Spherically symmetric models in general relativity. Monthly Notices of the Royal Astronomical Society 107: 410–425. Reprinted in 1999 with an editor’s note by A.Krasiński in General Relativity and Gravitation 31: 1777–1805 CrossRefADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Bondi H. 1948. Review of cosmology. Monthly Notices of the Royal Astronomical Society 108: 104–120 CrossRefADSzbMATHGoogle Scholar
  24. 24.
    Bondi H. 1952a. On spherically symmetric accretion. Monthly Notices of the Royal Astronomical Society 112: 195–204 CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Bondi H. 1952b. Cosmology. Cambridge, Cambridge University Press Google Scholar
  26. 26.
    Bondi H. 1956a. The steady-state theory of cosmology and relativity. In Mercier and Kervaire. pp. 152–154 Google Scholar
  27. 27.
    Bondi H. 1956b. The electromagnetic field due to a uniformly accelerated charge, with special reference to the case of gravitation. In Fünfzig Jahre Relativitätstheorie. Eds. A. Mercier and M. Kervaire. Basel, Birkhäuser, p. 98 Google Scholar
  28. 28.
    Bondi H. 1957a. Negative mass in general relativity. Reviews of Modern Physics 29: 423–438 CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Bondi H. 1957b. Plane gravitational waves in general relativity. Nature 179: 1072–1073 CrossRefADSzbMATHGoogle Scholar
  30. 30.
    Bondi H. 1959. The teaching of special relativity. Reports of Progress in Physics 22: 97–120 CrossRefADSGoogle Scholar
  31. 31.
    Bondi H. 1960. Gravitational waves in general relativity. Nature 186: 535 CrossRefADSzbMATHGoogle Scholar
  32. 32.
    Bondi H. 1962. On the physical characteristics of gravitational waves. In Lichnerowicz & Tonnelat. pp. 129–134 Google Scholar
  33. 33.
    Bondi H. 1964a. Radiation from an isolated system. In Relativistic Theories of Gravity. L. Infeld. Gauthier-Villiers, Paris, pp. 115–122 Google Scholar
  34. 34.
    Bondi H. 1964b. The contraction of gravitating spheres. Proceedings of the Royal Society of London A 281: 39–48 CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Bondi H. 1964c. Massive spheres in general relativity. Proceedings of the Royal Society of London A 282: 303–317 CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Bondi H. Ed. 1965. Abstracts/Proceedings: International Conference on Relativistic Theories of Gravitation, 2 volumes. London, ARL-0032, King’s College London. Google Scholar
  37. 37.
    Bondi H. 1966. ARL 66-0075. Research Program in Relativity Physics. Google Scholar
  38. 38.
    Bondi H. 1967. Assumption and Myth in Physical Theory. Cambridge, Cambridge University Press Google Scholar
  39. 39.
    Bondi H. 1978. Interview of Hermann Bondi by David DeVorkin on 1978 March 20, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/4519
  40. 40.
    Bondi H. 1987. Gravitating toward wave theory. The Scientist 1: 17 Google Scholar
  41. 41.
    Bondi H. 1990a. Science, Churchill & Me. Oxford, Pergamon Press. Google Scholar
  42. 42.
    Bondi H. 1990b. This week’s Citation Classic. CC/Number 30, July 23, 1990. http://garfield.library.upenn.edu/classics1990/A1990DN22600001.pdf
  43. 43.
    Bondi H. 1995. Essay review: How clever are we? Studies in the History and Philosophy of Modern Physics 26: 333–337 CrossRefADSGoogle Scholar
  44. 44.
    Bondi H., Gold T. 1948. The steady state theory of the expanding universe. Monthly Notices of the Royal Astronomical Society 108: 252–270 CrossRefADSzbMATHGoogle Scholar
  45. 45.
    Bondi H., Gold T. 1955. The field of a uniformly accelerated charge, with special reference to the problem of gravitational acceleration. Proceedings of the Royal Society of London A 229: 416–424 CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    Bondi H., Hoyle F. 1944. On the mechanism of accretion by stars. Monthly Notices of the Royal Astronomical Society 104: 273–282 CrossRefADSGoogle Scholar
  47. 47.
    Bondi H., Kilmister C.W. 1959. Review: The impact of Logik Der Forschung. The British Journal for the Philosophy of Science 10 : 55–57 CrossRefGoogle Scholar
  48. 48.
    Bondi H., McCrea W.H. 1960. Energy transfer by gravitation in Newtonian theory. Proceedings of the Cambridge Philosophical Society 56: 410–413 CrossRefADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Bondi H., Pirani F.A.E., Robinson I. 1959. Gravitational waves in general relativity III. Exact Plane Waves. Proceedings of the Royal Society of London A 251: 519–533 CrossRefADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Bondi H., Pirani F.A.E. 1988. Energy conversion by gravitational waves. Nature 332: 212 CrossRefADSGoogle Scholar
  51. 51.
    Bondi H., Pirani F.A.E. 1989. Gravitational waves in general relativity XIV, Proceedings of the Royal Society of London A 421: 395–410 CrossRefADSGoogle Scholar
  52. 52.
    Bondi H., Samuel J. 1997. The Lense-Thirring effect and Mach’s principle. Physics Letters A 228: 121–126 CrossRefADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Bondi H., Van der Burg M.G.J., Metzner A.W.K. 1962. Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proceedings of the Royal Society ofLondon A 269: 21–52 CrossRefADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Bonolis L. 2017. Stellar structure and compact objects before 1940: towards relativistic astrophysics. European Physical Journal H 42: 311–393 CrossRefADSGoogle Scholar
  55. 55.
    Brill D.R., Jang P.S. 1980. The Positive Mass Conjecture. In Held Vol. 1, pp. 173–193 Google Scholar
  56. 56.
    Brinkmann H.W. 1923. On Riemann spaces conformal to Einstein space. Proceedings of the National Academy of Sciences 9: 172–174 CrossRefADSGoogle Scholar
  57. 57.
    Brinkmann H.W. 1925. Einstein spaces which are mapped conformally on each other. Mathematische Annalen 94: 119–145 CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    Buchdahl H. 1959. General relativistic fluid spheres. Physical Review 116: 1027–1034 CrossRefADSMathSciNetzbMATHGoogle Scholar
  59. 59.
    Bunch T.S., Davies P.C.W. 1978. Quantum field theory in de Sitter space: renormalization by point splitting. Proceedings of the Royal Society of London A. 360: 117–134 CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Campbell L., Garnett W. 1882. The Life of James Clerk Maxwell. London, MacMillan Google Scholar
  61. 61.
    Carter B. 1971. Axisymmetric black hole has only two degees of freedom. Physical Review Letters 26, 331–332 CrossRefADSGoogle Scholar
  62. 62.
    Carter B. 1973. Black hole equilibrium states. Part II. General theory of Stationary Black Hole States. In DeWitt & DeWitt, pp. 125–214. Reprinted with an editorial note by M. Abromowicz in General Relativity and Gravitation 42: 647–744 Google Scholar
  63. 63.
    Carmeli M., Fickler S., Witten L. 1970. Relativity. New York, Plenum Press. Google Scholar
  64. 64.
    Cervantes-Cota J.L., Galindo-Uribarri S., Smoot G.F. 2016. A Brief History of Gravitational Waves. Universe: 2, 22 CrossRefADSGoogle Scholar
  65. 65.
    Chamseddine A.H., West P.C. 1977. Supergravity as a gauge theory of supersymmetry. Nuclear Physics B 129: 39–44 CrossRefADSGoogle Scholar
  66. 66.
    Chandrasekhar S. 1979. Einstein and general relativity: historical perspectives. American Journal of Physics 47: 212–217 CrossRefADSMathSciNetGoogle Scholar
  67. 67.
    Chandrasekhar S. 1983a. The Mathematical Theory of Black Holes. Oxford, Clarendon Press Google Scholar
  68. 68.
    Chandrasekhar S. 1983b. On stars, their evolution and their stability. Nobel lecture 8 December 1983. Nobel Media AB 2019. Thu. 18 Apr 2019. https://www.nobelprize.org/prizes/physics/1983/chandrasekhar/lecture/
  69. 69.
    Chen C-M., Liu J-L., Nester J.M. 2018. Gravitational energy is well defined. International Journal of Modern Physics D 27, 1847017 CrossRefADSGoogle Scholar
  70. 70.
    Chen C-M., Nester J.M., Ni W-T. 2017. A brief history of gravitational wave research. Chinese Journal of Physics 55: 142–169 CrossRefADSMathSciNetGoogle Scholar
  71. 71.
    Christensen S.M. 1976. Vacuum expectation value of the stress tensor in an arbitrary curved background. The covariant point-separation method. Physical Review D 14: 2490–2501 CrossRefADSMathSciNetGoogle Scholar
  72. 72.
    Christensen S.M. Ed. 1984a. Quantum Theory of Gravity. Bristol, Adam Hilger Ltd. Google Scholar
  73. 73.
    ChristensenS.M. 1984b. The world of the Schwinger-DeWitt Algorithm and the magical a2 coefficient. In Christensen. pp. 53–65 Google Scholar
  74. 74.
    Christensen S.M., Fulling S.A. 1977. Trace anomalies and the Hawking effect. Physical Review D 15: 2088–2104 CrossRefADSGoogle Scholar
  75. 75.
    Chruściel P.T., Costa J.L., Heusler M. 2012. Stationary Black Holes: Uniqueness and Beyond. Living Reviews in Relativity 15: 7 CrossRefADSzbMATHGoogle Scholar
  76. 76.
    Clark R.W. 1973. Einstein: The Life and Times. London, Hodder and Stoughton Google Scholar
  77. 77.
    Clifford W.K. 1863. The Analogues of Pascal’s Theorem. Quarterly Journal of Pure and Applied Mathematics Google Scholar
  78. 78.
    Clifford W.K. 1873. On the Hypotheses which lie at the bases of geometry. Nature 183: 14–17, 36, 37 Google Scholar
  79. 79.
    Clifford W.K. 1876. On the space-theory of matter. Proceedings of the Cambridge Philosophical Society 2: 157–158 Google Scholar
  80. 80.
    Clifford W.K. 1885. The Common Sense of the Exact Sciences. New York, Appleton & Company. Google Scholar
  81. 81.
    Collin S. 2006. Quasars and Galactic Nuclei, a Half-Century Agitated Story. AIP Conference Proceedings 861: 587 CrossRefADSGoogle Scholar
  82. 82.
    Collins H.M. 2004. Gravity’s Shadow. Chicago, University of Chicago Press Google Scholar
  83. 83.
    Combridge J.T. 1965. Bibliography of Relativity and Gravitation 1921 to 1937. London, King’s College. Google Scholar
  84. 84.
    Crampin M., Foster J. 1966. Supertranslations in flat space-time. Mathematical Proceedings of the Cambridge Philosophical Society 62: 269–276 CrossRefMathSciNetGoogle Scholar
  85. 85.
    Crampin M., Pirani F.A.E. 1986. Applicable Differential Geometry. Cambridge, Cambridge University Press Google Scholar
  86. 86.
    Cvetic M., Satz A. 2018. General relation between Aretakis charge and Newman-Penrose charge. Physical Review D 98: 124035 CrossRefADSMathSciNetGoogle Scholar
  87. 87.
    Damour T. 2015. 1974: The discovery of the first binary pulsar. Classical and Quantum Gravity 32: 124009 CrossRefADSGoogle Scholar
  88. 88.
    Davies P.C.W. 1974. The Physics of Time Asymmetry. Leighton Buzzard, Surrey University Press Google Scholar
  89. 89.
    Davies P.C.W. 1975. Scalar particle production in Schwarzschild and Rindler metrics. Journal of Physics A 8: 609–616 CrossRefGoogle Scholar
  90. 90.
    Davies P.C.W. 1977. The thermodynamic theory of black holes. Proceedings of the Royal Society of London A 353: 499–521 CrossRefADSGoogle Scholar
  91. 91.
    Davies P.C.W. 1984. Particles do not exist. In Christensen. pp. 66–77 Google Scholar
  92. 92.
    Davies P.C.W., Fulling S.A., Unruh W.G. 1976. Energy-momentum tensor near an evaporating black hole. Physical Review D 13: 2720–2723 CrossRefADSGoogle Scholar
  93. 93.
    Davies P.C.W., Taylor J.G. 1974. Do black holes really explode? Nature 250: 37–38 CrossRefADSGoogle Scholar
  94. 94.
    Debever R. 1959 Sur la tenseur de super-energie. Comptes Rendus 249: 1324–1326 MathSciNetzbMATHGoogle Scholar
  95. 95.
    Deser S. 2018. A brief history (and geography) of supergravity: the first three weeks and after. European Physical Journal H 43: 281–291 CrossRefADSGoogle Scholar
  96. 96.
    Deser S., Duff M.J., Isham C.J. 1976a. Non-local conformal anomalies. Nuclear Physics B 111: 45–55 CrossRefADSMathSciNetzbMATHGoogle Scholar
  97. 97.
    Deser S., Ford K.W. Eds. 1965a. Brandeis Summer Institute in Theoretical Physics 1964, Volume 1, Lectures on General Relativity. Englewood Cliffs, Prentice-Hall Inc. Google Scholar
  98. 98.
    Deser S., Ford K.W. Eds. 1965b. Brandeis Summer Institute in Theoretical Physics 1964, Volume 2, Lectures on Particles and Field Theory. Englewood Cliffs, Prentice-Hall Inc. Google Scholar
  99. 99.
    Deser S., Pirani F.A.E., Robinson D.C. 1976b. Imbedding the G-string pre-print, publishedas New embedding model of general relativity. Physical Review D 14: 3301–3303 CrossRefADSGoogle Scholar
  100. 100.
    Deser S., Zumino B. 1976. Consistent supergravity. Physics Letters B 62: 335–337 CrossRefADSMathSciNetGoogle Scholar
  101. 101.
    DeWitt B. 1957. Introductory note. Reviews of Modern Physics 29: 351 CrossRefADSGoogle Scholar
  102. 102.
    De Witt B. 2005. God’s rays. Physics Today 58: 32–34 CrossRefGoogle Scholar
  103. 103.
    DeWitt B. 2009. Quantum gravity: yesterday and today. General Relativity & Gravitation 41: 413–419 CrossRefADSMathSciNetzbMATHGoogle Scholar
  104. 104.
    DeWitt C. 1957 Conference on the Role of Gravitation in Physics. Ohio, Wright Air Development Center Technical Report 57-216. ASTIA Document No. A D118180 Google Scholar
  105. 105.
    DeWitt C., DeWitt B. Eds. 1964. Relativity, Groups and Topology Les Houches 1963. New York, Gordon and Breach Inc. Google Scholar
  106. 106.
    DeWitt C., DeWitt B. Eds. 1973. Les Astres Occlus,Black Holes, Les Houches 1972. New York, Gordon & Breach. Google Scholar
  107. 107.
    DeWitt C., Rickles D. Eds. 2011. The Role of Gravitation in Physics. Report from the 1957 Chapel Hill Conference. Berlin, Edition Open Sources. Google Scholar
  108. 108.
    d’Inverno R.A. 1970. The application of algebraic manipulation by computer to some problems in general relativity. PhD Thesis, University of London, King’s College. Google Scholar
  109. 109.
    d’Inverno R.A. 1980. A Review of Algebraic Computing in General Relativity. In Held 1980. Vol. 1, pp. 491–537 Google Scholar
  110. 110.
    d’Inverno R.A. 1992. Introducing Einstein’s Relativity. Oxford, Clarendon Press Google Scholar
  111. 111.
    Dirac P.A.M. 1950. Generalized Hamiltonian dynamics. Canadian Journal of Mathematics 2 , 129–148 CrossRefMathSciNetzbMATHGoogle Scholar
  112. 112.
    Domb C. Ed. 1963. Clerk Maxwell and Modern Science. London, The Athlone Press Google Scholar
  113. 113.
    Domb C. 1980. James Clerk Maxwell in London 1860–1865. Notes and Records of the Royal Society of London 35: 67–103 CrossRefMathSciNetGoogle Scholar
  114. 114.
    Duff M.J. 1975. Covariant quantization. In Isham, Penrose, Sciama. pp. 78–135 Google Scholar
  115. 115.
    Duff M.J. 1981. Inconsistency of quantum field theory in curved space-time. In Isham C.J., Penrose R., Sciama D.W. 1981. Quantum Gravity 2: A Second Oxford Symposium. Oxford, Clarendon Press, pp. 81–105 Google Scholar
  116. 116.
    Duff M.J. 1994. Twenty years of the Weyl anomaly. Classical and Quantum Gravity 11: 1387–1404 CrossRefADSMathSciNetzbMATHGoogle Scholar
  117. 117.
    Dyson F.W., Eddington A.S., Davidson C. 1920. A Determination of the deflection of light by the Sun’s gravitational field. Royal Society of London, Philosophical Transactions A 220: 291–333 CrossRefADSGoogle Scholar
  118. 118.
    Eddington A.S. 1922. The propogation of gravitational waves. Royal Society of London. Proceedings A 102: 268–282 CrossRefADSGoogle Scholar
  119. 119.
    Eddington A.S. 1923. The Mathematical Theory of Relativity. Cambridge, Cambridge University Press Google Scholar
  120. 120.
    Eddington A.S. 1924. A comparison of Whitehead’s and Einstein’s formulae. Nature 113: 192 CrossRefADSGoogle Scholar
  121. 121.
    Edgar R. 2004. A Review of Bondi-Hoyle-Lyttleton accretion. New Astronomy Reviews 48: 843–859 CrossRefADSGoogle Scholar
  122. 122.
    Ehlers J. ed. 1979. Isolated Gravitating Systems in General Relativity. Amsterdam, North-Holland Publishing Company. Google Scholar
  123. 123.
    Ehlers J., Pirani F.A.E., Schild A. 1972. The geometry of free fall and light propogation. In O’Raifeartaigh. pp. 63–84. Reprinted in 2012, with an editorial note by A. Trautman in General Relativity and Gravitation 44: 587–1609 Google Scholar
  124. 124.
    Einstein A. 1915. Die Feldgleichungen der Gravitation. Kõniglich Preussiche Academie der Wissenshaften Zu Berlin, Situngsberichte: 844–847 Google Scholar
  125. 125.
    Einstein A. 1916a. Die Grundlagh der Allgemeinen Relativitätstheorie. Annalen der Physik 49: 769–822 CrossRefADSzbMATHGoogle Scholar
  126. 126.
    Einstein A. 1916b. Näherungsweise Integration der Feldgleichungen der Gravitation Kõniglich Preussiche Academie der Wissenshaften Zu Berlin, Situngsberichte 688–696 Google Scholar
  127. 127.
    Einstein A. 1918. Über Gravitationswellen. Kõniglich Preussiche Academie der Wissenshaften Zu Berlin, Situngsberichte: 154–167 Google Scholar
  128. 128.
    Einstein A. 1921a. A brief outline of the development of the theory of relativity. Nature Feb 17: 782–784 CrossRefADSGoogle Scholar
  129. 129.
    Einstein A. 1921b. King’s College Lecture. The Collected Papers of Albert Einstein, volume 7, 2002. Princeton, Princeton University Press. Engel A. (trans.), Schucking E. (consult.): Document 58, pp. 238–240. Google Scholar
  130. 130.
    Einstein A. 1922. Sidelights on Relativity (Jeffery G.B., Perrett W., Transl.). London, Methuen and Company Ltd. Google Scholar
  131. 131.
    Einstein A. 1949. Notes for an autobiograpy. Saturday Review Nov. 26, pp. 9–12. https://archive.org/details/EinsteinAutobiography
  132. 132.
    Einstein A. 1954. Albert Einstein (Princeton) to Felix Pirani (Cambridge, Engl.) 2 February 1954. Albert Einstein Archives, The Hebrew University of Jerusalem, Call no. 17-447 [3 typed sheets] Google Scholar
  133. 133.
    Einstein A. 1987ff. The Collected Papers of Albert Einstein, Princeton (CPAE), Princeton University Press. Originals and English translation available online at http://einstein.papers.press.princeton.edu
  134. 134.
    Einstein A., Infeld L., Hoffmann B. 1938. The gravitational equations and the problem of motion. Annals of Mathematics 39: 65–100 CrossRefADSMathSciNetzbMATHGoogle Scholar
  135. 135.
    Einstein A., Rosen N. 1937. On gravitational waves. Journal of the Franklin Institute 223: 43–54 CrossRefADSMathSciNetzbMATHGoogle Scholar
  136. 136.
    Eisenstaedt J. 1986. La relativité générale à l’étiage: 1925–1955. Archive for History of Exact Sciences 35: 115–185 CrossRefADSMathSciNetzbMATHGoogle Scholar
  137. 137.
    Eisenstaedt J 1987. Trajectoires et Impasses de la Solution de Schwarzschild. Archive for History of Exact Sciences 37: 275–357 ADSMathSciNetzbMATHGoogle Scholar
  138. 138.
    Eisenstaedt J. 1989a. The Low Water Mark of General Relativity, 1925–1955. In Howard and Stachel. pp. 277–292 Google Scholar
  139. 139.
    Eisenstaedt J. 2006. The Curious History of Relativity: How Einstein’s theory of Gravity was Lost and Found Again. Princeton, Princeton University Press Google Scholar
  140. 140.
    Eisenstaedt J., Kox A.J. Eds. 1992 Studies in the History of General Relativity. Boston, Birkhäuser Google Scholar
  141. 141.
    Ellis G.F.R. 2014. Stephen Hawking’s 1966 Adams Prize Essay. European Physical Journal H 39: 403–411 CrossRefADSGoogle Scholar
  142. 142.
    Ellis G.F.R., Penrose R. 2010. Dennis William Sciama: 18 November 1926–19 December 1999. Biographical Memoirs of Fellows of the Royal Society of London 56: 401–422 CrossRefGoogle Scholar
  143. 143.
    Exton A.R., Newman E.T., Penrose R. 1969. Conserved quantities in the Einstein-Maxwell theory. Journal of Mathematical Physics 10: 1566–1570 CrossRefADSMathSciNetGoogle Scholar
  144. 144.
    Finkelstein D. 1959. Past-future asymmetry of the gravitational field of a point-particle. Physical Review 110: 965–967 CrossRefADSzbMATHGoogle Scholar
  145. 145.
    Ford L.H. 1978. Quantum coherence effects and the second law of thermodynamics. Proceedings of the Royal Society of London A 364: 227–236 CrossRefADSGoogle Scholar
  146. 146.
    Ford L.H. 1997. Quantum field theory in curved spacetime. arXiv:gr-qc/9707062v1.
  147. 147.
    Foster A.W., Pirani F.A.E. 1948. Use of the Hartman Formula. American Journal of Physics 16: 56 CrossRefADSGoogle Scholar
  148. 148.
    Frauendiener J. 2004. Conformal infinity. Living Reviews in Relativity 7: 1 CrossRefADSMathSciNetzbMATHGoogle Scholar
  149. 149.
    Freedman D.Z., van Nieuwenhuizen P., Ferrara S. 1976. Progress toward a theory of supergravity. Physical Review D 13: 3214–3218 CrossRefADSMathSciNetGoogle Scholar
  150. 150.
    Fulling S.A. 1973. Non-uniqueness of canonical field quantization in Riemannian space-time. Physical Review D 7: 2850–2862 CrossRefADSGoogle Scholar
  151. 151.
    Fulling S.A. 1984. What have we learned from quantum field theory in curved space-time? In Christensen. pp. 42–51 Google Scholar
  152. 152.
    Fulling S.A. 1989. Aspects of Quantum Field Theory in Curved Space-Time. Cambridge, Cambridge University Press Google Scholar
  153. 153.
    Fulling S.A., Davies P.C.W. 1976. Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proceedings of the Royal Society of London A 348: 393–414 CrossRefADSMathSciNetzbMATHGoogle Scholar
  154. 154.
    Fulling S.A., Matsas G.E.A. 2014. Unruh effect. Scholarpedia 9: 31789 CrossRefADSGoogle Scholar
  155. 155.
    Gale G. 2015. Cosmology: Methodological Debates in the 1930’s and 1940’s. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/cosmology-30s/
  156. 156.
    Galindo S., Cervantes-Cota J.L. 2018. Clifford’s attempt to test his gravitational hypothesis. Revista Mexicana de Fisica E 64: 162–168 CrossRefMathSciNetGoogle Scholar
  157. 157.
    Geroch R. 1973. Energy extraction. Annals of the New York Academy of Sciences 224: 108–117 CrossRefADSzbMATHGoogle Scholar
  158. 158.
    Gibbons G., Will C.M. 2008. On the multiple deaths of Whitehead’s theory of gravity. Studies in the History and Philosophy of Modern Physics 39: 41–61 CrossRefADSMathSciNetzbMATHGoogle Scholar
  159. 159.
    Goenner H., Renn J., Ritter J., Sauer T. 1999. The Expanding Worlds of General Relativity. Boston, Birkhauser Verlag. Google Scholar
  160. 160.
    Gold T. Ed. 1967. The Nature of Time. Ithaca, Cornell University Press Google Scholar
  161. 161.
    Gold T. 1968. Rotating neutron stars as the origin of the pulsating radio sources. Nature 218: 731–732 CrossRefADSGoogle Scholar
  162. 162.
    Goldberg J.N. 1955. Gravitational radiation. Physical Review 99: 1873–1883 CrossRefADSMathSciNetzbMATHGoogle Scholar
  163. 163.
    Goldberg J.N. 1992. U.S. Air Force Support of General Relativity: 1956–1972. In Eisenstaedt & Kox. pp. 89–102 Google Scholar
  164. 164.
    Goldberg J.N., Sachs R.K. 1962. A theorem on Petrov types. Acta Physica Polonica Supplement 22: 13–23. Reprinted in 2009, with an editorial note by A. Krasiński and M. Przanowski in General Relativity and Gravitation 41: 433–444. MathSciNetzbMATHGoogle Scholar
  165. 165.
    Gray J. 2006. Overstating their case? Reflections on British mathematics in the nineteenth century. BSHM Bulletin 21: 178–185 CrossRefMathSciNetzbMATHGoogle Scholar
  166. 166.
    Greaves W.M.H. 1940. Obituary. Monthly Notices of the Royal Astronomical Society 100: 258–263 Google Scholar
  167. 167.
    Havas P. 1979. Equations of motion and radiation reaction in the special and general theory of relativity. In Ehlers. pp. 74–155 Google Scholar
  168. 168.
    Hawking S.W. 1972. Black holes in general relativity. Communications in Mathematical Physics 25: 152–166 CrossRefADSMathSciNetGoogle Scholar
  169. 169.
    Hawking S.W. 1974. Black hole explosions. Nature 248: 30–31 CrossRefADSzbMATHGoogle Scholar
  170. 170.
    Hawking S.W. 1975a. Particle creation by black holes. In Isham, Penrose, Sciama. pp. 219–267 Google Scholar
  171. 171.
    Hawking S.W. 1975b. Particle creation by black holes. Communications in Mathematical Physics 43: 199–220 CrossRefADSMathSciNetzbMATHGoogle Scholar
  172. 172.
    Hawking S.W. 2014. Singularities and the geometry of space-time. European Physical Journal H 39: 413–503 CrossRefADSGoogle Scholar
  173. 173.
    Hawking S.W., Ellis G.F.R. 1973. The Large Scale Structure of Space-Time. Cambridge, Cambridge University Press Google Scholar
  174. 174.
    Hawking S.W., Israel W. Eds. 1987. 300 years of gravitation. Cambridge, Cambridge University Press Google Scholar
  175. 175.
    Hearnshaw F.J.C. 1929. The Centenary History of King’s College London 1828–1928. London, George G. Harrap & Company Ltd. Google Scholar
  176. 176.
    Held A. Ed. 1980. General Relativity and Gravitation Vols. 1 & 2. New York, Plenum Press Google Scholar
  177. 177.
    Heusler M. 1996. Black Hole Uniqueness Theorems. Cambridge, Cambridge University Press Google Scholar
  178. 178.
    Hill C.D., Nurowski P. 2017. How the green light was given for gravitational wave search. Notices of the American Mathematical Society 64, 686–692 MathSciNetzbMATHGoogle Scholar
  179. 179.
    Hodges A.P. 1983a. Twistor diagrams and massless Møller scattering. Proceedings of the Royal Society of London A 385: 207–228 CrossRefADSMathSciNetGoogle Scholar
  180. 180.
    Hodges A.P. 1983b. Twistor diagrams and massless Compton scattering. Proceedings of the Royal Society of London A 386: 185–210 CrossRefADSMathSciNetGoogle Scholar
  181. 181.
    Hodges A.P. 1983c. Alan Turing: the Enigma. London, Burnett Books Ltd. Google Scholar
  182. 182.
    Hodges A.P. 1985. Mass eigenstates in twistor theory. Proceedings of the Royal Society of London A 397: 375–396 CrossRefADSMathSciNetGoogle Scholar
  183. 183.
    Hodges A.P., Huggett S. 1980. Twistor diagrams. Surveys of High Energy Physics 1: 333–353 CrossRefADSGoogle Scholar
  184. 184.
    Hoffmann B. Ed. 1966. Perspectives in Geometry and Relativity. Bloomington, Indiana University Press Google Scholar
  185. 185.
    Howard D., Stachel J. Eds. 1989. Einstein and the History of General Relativity. Boston, Birkhäuser Google Scholar
  186. 186.
    Hoyle F. 1948. A New Model for the Expanding Universe. Monthly Notices of the Royal Astronomical Society 108: 372–382 CrossRefADSzbMATHGoogle Scholar
  187. 187.
    Hoyle F., Lyttleton R.A. 1939. The effect of interstellar matter on climate variation. Proceedings of the Cambridge Philosophical Society 35: 405–415 CrossRefADSGoogle Scholar
  188. 188.
    Huelin G. 1978. King’s College London 1828–1978. London, University of London King’s College. Google Scholar
  189. 189.
    Huggett S.A., Tod K.P. 1985. An Introduction to Twistor Theory. Cambridge, Cambridge University Press Google Scholar
  190. 190.
    Infeld L., Scheidegger A.E. 1951. Radiation and gravitational equations of motion. CanadianJournal of Mathematics 3: 195–207 CrossRefMathSciNetzbMATHGoogle Scholar
  191. 191.
    Infeld L. Ed. 1964. Relativistic Theories of Gravitation. Oxford, Pergamon Press Google Scholar
  192. 192.
    Isham C.J. 1975a. An introduction to quantum gravity. In Isham, Penrose, Sciama. pp. 1–77 Google Scholar
  193. 193.
    Isham C.J. 1976. Some quantum field theory aspects of the superspace quantization of general relativity. Proceedings of the Royal Society of London A 351: 209–232 CrossRefADSMathSciNetGoogle Scholar
  194. 194.
    Isham C.J., Nelson J.E. 1974. Quantization of a coupled Fermi field and Robertson-Walker metric. Physical Review D 10: 3226–3234 CrossRefADSMathSciNetGoogle Scholar
  195. 195.
    Isham C.J., Penrose R., Sciama D.W. Eds. 1975. Quantum Gravity. Oxford, Clarendon Press Google Scholar
  196. 196.
    Israel W. 1967. Event horizons in static vacuum space-times. Physical Review 164: 1776–1779 CrossRefADSGoogle Scholar
  197. 197.
    Israel W. 1968. Event Horizons in Static Electrovac Space-Times. Communications in Mathematical Physics 8: 245–260 CrossRefADSMathSciNetGoogle Scholar
  198. 198.
    Israel W. 1987. Dark stars: the evolution of an idea. In Hawking & Israel. pp. 199–277 Google Scholar
  199. 199.
    Israel W. 1996. Imploding stars, shifting continents and the inconsistency of matter. Foundations of Physics 26: 595–616 CrossRefADSMathSciNetGoogle Scholar
  200. 200.
    Jeffery G.B. 1924. Relativity for Physics Students. London, Methuen & Co. Ltd. Google Scholar
  201. 201.
    Jordan P., Ehlers J., Sachs R.K. 1961. English translation in 2013, Contribution to the theory of pure gravitational radiation. Exact solutions of the field equations of the general theory of relativity II. General Relativity and Gravitation 2013, 45: 2691–2753 CrossRefADSzbMATHGoogle Scholar
  202. 202.
    Kaiser D. 2012. Booms, Busts and the World of Ideas: Enrollment Pressures and the Challengeof Specialization. Osiris 27: 276–302 CrossRefGoogle Scholar
  203. 203.
    Kaloper N., Kleban M., Martin D. 2010. Mc Vittie’s Legacy: Black Holes in an Expanding Universe. arXiv:1003.4777v.3 [hep-th]
  204. 204.
    Kane G.L., Shifman M. 2000. The Supersymmetric World: The Beginning of The Theory. Singapore, World Scientific Google Scholar
  205. 205.
    Kennefick D. 1999. Controversies in the history of the radiation reaction problem in general relativity. In Goenner, Renn, Ritter and Sauer. pp. 207–234 Google Scholar
  206. 206.
    Kennefick D. 2005. Einstein versus the Physical Review. Physics Today 58: 43–48 CrossRefGoogle Scholar
  207. 207.
    Kennefick D. 2007. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton, Princeton University Press Google Scholar
  208. 208.
    Kennefick D. 2014. Relativistic lighthouses: the role of the binary pulsar in proving the existence of gravitational waves. arXiv:1407.2164 [physics.hist-ph]
  209. 209.
    Kennefick D. 2017. The binary pulsar and the quadrupole formula controversy. The European Physical Journal H 42: 293–310 CrossRefADSGoogle Scholar
  210. 210.
    Kerr R.P. 1963. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters 11: 522–523 CrossRefMathSciNetzbMATHGoogle Scholar
  211. 211.
    Kerr R.P. 1965. Gravitational collapse and rotation. In Quasistellar Sources and Gravitational Collapse. Eds. I. Robinson, A. Schild, E. Schucking. Chicago, University of Chicago Press, pp. 99–102 Google Scholar
  212. 212.
    Kerr R.P. 2009. The Kerr and Kerr-Schild metrics. In Wiltshire, Visser, Scott. pp. 38–72 Google Scholar
  213. 213.
    Khalatnikov I.M., Kamenshchik A.Yu. 2008 Lev Landau and the problem of singularities in cosmology. arXiv:0803.2684v1 [gr-qc]
  214. 214.
    Khan K.A., Penrose R. 1971. Scattering of two impulsive gravitational plane waves. Nature 229: 185–186 CrossRefADSGoogle Scholar
  215. 215.
    Kilmister C.W 1949. The use of quaternions in wave-tensor calculus. Proceedings of the Royal Society of London A 199: 517–532 CrossRefADSMathSciNetzbMATHGoogle Scholar
  216. 216.
    Kilmister C.W. 1951. Tensor identities in Wave-Tensor Calculus. Proceedings of the Royal Society of London A 207: 402–415 ADSMathSciNetzbMATHGoogle Scholar
  217. 217.
    Kilmister C.W. 1966. Alternative field equations in general relativity. In Hoffmann. pp. 201–216 Google Scholar
  218. 218.
    Kilmister C.W.K. 1973. General Theory of Relativity. Oxford, Pergamon Press Ltd. Google Scholar
  219. 219.
    Kilmister C.W. 1988. Obituary J.T.Combridge. Bulletin of the London Mathematical Society 20: 156–158 CrossRefMathSciNetzbMATHGoogle Scholar
  220. 220.
    Kilmister C.W. 1994. George Frederick James Temple 1901–1992. Biographical Memoirs of Fellows of the Royal Society of London 40: 385–400 Google Scholar
  221. 221.
    Kilmister C.W. 1995. Obituary George Frederick James Temple. Bulletin of the London Mathematical Society 27: 281–287 CrossRefMathSciNetzbMATHGoogle Scholar
  222. 222.
    Kilmister C.W., Newman D.J. 1961. The use of algebraic structures in physics. Proceedings of the Cambridge Philosophical Society 57: 851–864 CrossRefADSMathSciNetzbMATHGoogle Scholar
  223. 223.
    Klein O. 1928. Zur fünfdimensionalen Darstellung der Relativitätstheorie. Zeitschrift für Physik 46: 188–208 CrossRefADSzbMATHGoogle Scholar
  224. 224.
    Kobayashi S., Nomizu K. 1963. Foundations of Differential Geometry Volume 1. New York, John Wiley & Sons Inc. Google Scholar
  225. 225.
    Kox A.J., Eisenstaedt J. Eds. 2005. The Universe of General Relativity. Boston, Birkhäuser Google Scholar
  226. 226.
    Kragh H. 1996. Cosmology and Controversy. Princeton, Princeton University Press Google Scholar
  227. 227.
    Kragh H. 2012. Geometry and Astronomy: Pre-Einstein Speculations of Non-Euclidean Space. arXiv:1205.4909 [physics.hist-ph]
  228. 228.
    Krawczynski H. 2018. Difficulties of Quantitative Tests of the Kerr-Hypothesis with X-Ray Observations of Mass Accreting Black Holes. General Relativity and Gravitation. 50: 100 CrossRefADSzbMATHGoogle Scholar
  229. 229.
    Kruskal M.D. 1960. Maximal extension of Schwarzschild metric. Physical Review 119: 1743–1745 CrossRefADSMathSciNetzbMATHGoogle Scholar
  230. 230.
    Künzle H.P. 1968. Maxwell fields satisfying Huygen’s principle. Proceedings of the Cambridge Philosophical Society 64: 779–785 CrossRefADSGoogle Scholar
  231. 231.
    Künzle H.P. 1971. On the spherical symmetry of a static perfect fluid. Communications in Mathematical Physics 20: 85–100 CrossRefADSMathSciNetGoogle Scholar
  232. 232.
    Lake K., Abdelqader M. 2011. More on McVittie’s Legacy: A Schwarzschild-de Sitter black and white hole embedded in an asymptotically flat ΛCDM cosmology. Physical Review D 84: 044045 CrossRefADSGoogle Scholar
  233. 233.
    Lalli R. 2017. Building the General Relativity and Gravitation Community During the Cold War. Cham Switzerland, University of Rochester, Springer International Publishing. Google Scholar
  234. 234.
    Lehner C., Renn J., Schemmel M. 2012. Einstein and the Changing Worldviews of Physics. Boston, Birkhäuser Google Scholar
  235. 235.
    Levi H. 1968. Gravitational Induction. Proceedings of the Cambridge Philosophical Society 64: 1081–1087 CrossRefADSGoogle Scholar
  236. 236.
    Lichnerowicz A. 1955. Théories Relativistes de la Gravitation et de l’Electromagnétisme. Paris, Masson et Cie. Google Scholar
  237. 237.
    Lichnerowicz M.A., Tonnelat M.A. Eds. 1962. Les Théories Relativistes de la Gravitation Royaumont 1959. Paris, Centre National de la Recherche Scientifique. Google Scholar
  238. 238.
    Lichnerowicz A. 1992. Mathematics and General Relativity: A Recollection. In Eisenstaedt, Kox. pp. 103–108 Google Scholar
  239. 239.
    Lindblom L. 1992. On the symmetries of equilibrium stellar models. Philosophical Transactions of the Royal Society of London A 340: 353–364 CrossRefADSMathSciNetzbMATHGoogle Scholar
  240. 240.
    Longair M. 2006. The Cosmic Century. Cambridge, Cambridge University Press. Measuring and Modeling the Universe, Ed. W. L. Freedman. Cambridge, Cambridge University Press, pp. 1–18 Google Scholar
  241. 241.
    MacCallum M.A.H. 1989. George Cunliffe Mc Vittie 1904–1988 obituary. Quarterly Journal of the Royal Astronomical Society 30: 119–122 ADSGoogle Scholar
  242. 242.
    MacCallum M.A.H. 2013. Exact solutions of Einstein’s equations. Scholarpedia 8: 8584 CrossRefADSGoogle Scholar
  243. 243.
    MacCallum M.A.H., Skea J.E.F., Mc Crea J.D., Mc Lenaghan R.G. 1994. Algebraic Computing in General Relativity. Oxford, Clarendon Press Google Scholar
  244. 244.
    MacCallumM.A.H., Skea J.E.F. 1994. SHEEP: A computer algebra system for general relativity. In MacCallum M.A.H., Skea J.E.F., Mc Crea J.D., Mc Lenaghan R.G. pp. 1–172 Google Scholar
  245. 245.
    McCarthy P.J. 1971. Properties and Representations of the Bondi-Metzner-Sachs group. PhD thesis, University of London, King’s College London. Google Scholar
  246. 246.
    McCrea W. 1955. Jubilee of relativity theory, conference at Berne. Nature 176: 330–331 CrossRefADSGoogle Scholar
  247. 247.
    McLenaghan R.G. 1969. An explicit determination of the empty space-times on which the wave equation satisfies Huygens’ principle. Mathematical Proceedings of the Cambridge Philosophical Society 65: 139–155 CrossRefMathSciNetzbMATHGoogle Scholar
  248. 248.
    McVittie G.C. 1929a. On Einstein’s unified field theory. Proceedings of the Royal Society of London A 124: 366–374 CrossRefADSzbMATHGoogle Scholar
  249. 249.
    McVittie G.C. 1929b. On Levi-Civita’s Modification of Einstein’s Unified Field Theory. Philosophical Magazine 8: 1033–1044 zbMATHGoogle Scholar
  250. 250.
    McVittie G.C. 1933. The mass particle in an expanding universe. Monthly Notices of the Royal Astronomical Society 93: 325–339 CrossRefADSzbMATHGoogle Scholar
  251. 251.
    McVittie G.C. 1937. Cosmological Theory. London, Methuen & Co. Ltd. Google Scholar
  252. 252.
    McVittie G.C. 1939. Observations and Theory in Cosmology. Proceedings of the Physical Society (London) 51: 529–537 CrossRefADSzbMATHGoogle Scholar
  253. 253.
    McVittie G.C. 1946. The Regraduation of Clocks in Spherically Symmetric Space-times of General Relativity. Proceedings of the Royal Society of Edinburgh Series A 62: 147–155 MathSciNetzbMATHGoogle Scholar
  254. 254.
    McVittie G.C. 1955. Gravitational Waves and One-dimensional Einsteinian Gas-Dynamics. Journal of Rational Mechanics and Analysis 4: 201–220 MathSciNetzbMATHGoogle Scholar
  255. 255.
    McVittie G.C. 1956. General Relativity and Cosmology. New York, John Wiley & Sons. Google Scholar
  256. 256.
    McVittie G.C. 1978. Interview of George McVittie by David DeVorkin on 1978 March 21, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD, USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/4774
  257. 257.
    Mädler T., Winicour J. 2016. Bondi-Sachs formalism. Scholarpedia 11(12): 33528 CrossRefADSGoogle Scholar
  258. 258.
    Mahon B. 2003. The Man who changed everything: The Life of James Clerk Maxwell. Chichester, John Wiley & Sons Ltd. Google Scholar
  259. 259.
    Martin J.L. 1959a. Classical Dynamics, and the Classical Analogue of a Fermi Oscillator. Proceedings of the Royal Society of London A 251: 536–542 CrossRefADSMathSciNetzbMATHGoogle Scholar
  260. 260.
    Martin J.L. 1959b. The Feynman Principle for a Fermi System. Proceedings of the Royal Society of London A 251: 543–549 CrossRefADSMathSciNetzbMATHGoogle Scholar
  261. 261.
    Masood-ul-Alam A.K.M. 2007. Proof that static stellar models are spherical. General Relativity and Gravitation 39: 55–85 CrossRefADSMathSciNetzbMATHGoogle Scholar
  262. 262.
    Mavridès S. 1973. L’Univers relativiste. Paris, Editions Albin Michel. Google Scholar
  263. 263.
    Maxwell J.C. 1856. On Faraday’s Lines of Force. Cambridge Philosophical Transactions 10: 27–83 Google Scholar
  264. 264.
    Maxwell J.C. 1861. On physical lines of force. Philosophical Magazine 90: In four parts, part I: 161–223, part II: 281–291 and 338–348, part III: 12–24, part IV: 85–95 Google Scholar
  265. 265.
    Maxwell J.C. 1865. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155: 459–512 CrossRefADSGoogle Scholar
  266. 266.
    Mercier A., Kervaire M. (Eds.) 1956. Fünfzig Jahre Relativitätstheorie/Cinquantenaire de la Théorie de la Relativité/Jubilee of Relativity Theory, Helvetica Physica Acta, Supplementum IV . Basel, Birkhauser Verlag, pp. 286 https://www.e-periodica.ch.
  267. 267.
    Mody C.C.M. 2016. Santa Barbara Physicists in the Vietnam Era. In Groovy Sciences: Knowledge, Innovation and American Counterculture. Kaiser D., McCray W.P. Eds. Chicago, The University of Chicago Press, pp. 70–108 Google Scholar
  268. 268.
    Moseley H. 1839. Lectures on Astronomy delivered at King’s College, London. London, John W, Parker. Google Scholar
  269. 269.
    Müller zum Hagen H. 1970a. On the analyticity of static black hole vacuum solutions of Einstein;s equations. Proceedings of the Cambridge Philosophical Society 67: 415–421 CrossRefMathSciNetzbMATHGoogle Scholar
  270. 270.
    Müller zum Hagen H. 1970b. On the analyticity of stationary black hole vacuum solutions of Einstein;s equations. Proceedings of the Cambridge Philosophical Society 68: 199–201 CrossRefMathSciNetzbMATHGoogle Scholar
  271. 271.
    Müller zum Hagen H., Robinson D.C., Seifert H.J. 1973. Black holes in static vacuum space-times, General Relativity and Gravitation 4: 53–78 CrossRefADSMathSciNetGoogle Scholar
  272. 272.
    Müller zum Hagen H., Robinson D.C., Seifert H.J. 1974. Black holes in static electrovacspace-times, General Relativity and Gravitation 5: 61–72 CrossRefADSMathSciNetGoogle Scholar
  273. 273.
    Myers S.B. 1941. Riemannian manifolds with positive mean curvature. Duke Mathematical Journal 8: 401–404 CrossRefMathSciNetzbMATHGoogle Scholar
  274. 274.
    Newman E.T. 2005. A Biased and Personal Description of GR at Syracuse University 1951–1961 in The Universe of General Relativity. Kox & Eisenstaedt. pp. 373–383 Google Scholar
  275. 275.
    Newman E.T., Adamo T. 2014. Kerr-Newman metric. Scholarpedia 9: 31791 CrossRefADSGoogle Scholar
  276. 276.
    Newman E.T., Couch E., Chinnapared K., Exton A., Prakash A. Torrence R. 1965. Journal of Mathematical Physics 6: 918–919 CrossRefADSMathSciNetGoogle Scholar
  277. 277.
    Newman E.T., Penrose R. 1962. An approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics 3: 566–578 CrossRefADSMathSciNetzbMATHGoogle Scholar
  278. 278.
    Newman E.T., Penrose R. 1965. 10 exact gravitationally-conserved quantities. Physical Review Letters 15: 231–233 CrossRefADSMathSciNetGoogle Scholar
  279. 279.
    Newman E.T., Penrose R. 1966. Note on the Bondi-Metzner-Sachs Group. Journal of Mathematical Physics 7: 863–870 CrossRefADSMathSciNetGoogle Scholar
  280. 280.
    Newman E.T., Penrose R. 1968. New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proceedings of the Royal Society of London A 305: 175–204 CrossRefADSGoogle Scholar
  281. 281.
    Newman E.T., Penrose R. 2009. Spin-coefficient formalism. Scholarpedia, 4: 744 CrossRefGoogle Scholar
  282. 282.
    Newman E.T., Tod K.P. 1980. Asymptotically Flat Space-Times. In Held Vol. 2 pp. 1–36 Google Scholar
  283. 283.
    Nolan B.C. 2017. Local properties and global structure of Mc Vittie space-times with non-flat FLRW backgrounds. Classical and Quantum Gravity 34: 225002 CrossRefADSMathSciNetzbMATHGoogle Scholar
  284. 284.
    Nordström, G. 1918. On the Energy of the Gravitational Field in Einstein’s Theory. Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam 26: 1201–1208 zbMATHGoogle Scholar
  285. 285.
    Niven W.D. Ed. 1890. The Scientific Papers of James Clerk Maxwell. Cambridge, Cambridge University Press Google Scholar
  286. 286.
    Oppenheimer J.R., Snyder H. 1939. On Continued Gravitational Contraction. Physical Review 56: 455–459 CrossRefADSMathSciNetzbMATHGoogle Scholar
  287. 287.
    Oppenheimer J.R., Volkoff G.M. 1939. On Massive Neutron Cores. Physical Review 55: 374–381 CrossRefADSzbMATHGoogle Scholar
  288. 288.
    O’Raifeartaigh L. Ed. 1972. General Relativity Papers in Honour of J.L. Synge. Oxford, Clarendon Press Google Scholar
  289. 289.
    Page D. 2005. Hawking radiation and black hole thermodynamics. New Journal of Physics 7: 203–235 CrossRefADSMathSciNetGoogle Scholar
  290. 290.
    Parker L., Navarro-Salas J. 2017. Fifty years of cosmological particle creation. arXiv:1702.07132v1 [physics. hist-ph]
  291. 291.
    Pearson K. 1892. The Grammar of Science. London, Walter Scott. Google Scholar
  292. 292.
    Peebles P.J.E. 2017. Robert Dicke and the naissance of experimental gravity physics 1957–1967. European Physical Journal H 42: 177–259 CrossRefADSGoogle Scholar
  293. 293.
    Penrose R. 1960. A spinor approach to general relativity. Annals of Physics. 10: 171–209 CrossRefADSMathSciNetzbMATHGoogle Scholar
  294. 294.
    Penrose R. 1962. Calculating GR in spinor form. In Lichnerowicz & Tonnelat. pp. 428–431 Google Scholar
  295. 295.
    Penrose R. 1963. Asymptotic properties of fields and space-times. Physical Review Letters 10: 66–68 CrossRefADSMathSciNetGoogle Scholar
  296. 296.
    Penrose R. 1964a. The light cone at infinity. In Infeld. pp. 369–373 Google Scholar
  297. 297.
    Penrose R. 1964b. Conformal treatment of Infinity. In DeWitt C. & DeWitt B. pp. 565–584 Google Scholar
  298. 298.
    Penrose R. 1965a. Zero rest-mass fields including gravitation: asymptotic behaviour. Proceedings of the Royal Society of London A 284: 159–203 CrossRefADSMathSciNetzbMATHGoogle Scholar
  299. 299.
    Penrose R. 1965b. Gravitational collapse and space-time singularities. Physical Review Letters 14: 57–59 CrossRefADSMathSciNetzbMATHGoogle Scholar
  300. 300.
    Penrose R. 1967. Cosmological boundary conditions for zero rest-mass fields. In Gold. pp. 42–54 Google Scholar
  301. 301.
    Penrose R. 1969. Gravitational Collapse: the Role of General Relativity. Revista del Nuovo Cimento 1: 252–276. Reprinted with editor’s note by A. Królak (2002). In General Relativity and Gravitation 34: 1135–1163. ADSGoogle Scholar
  302. 302.
    Penrose R. 1972. Techniques of differential topology in relativity. Philadelphia, Society for Industrial and Applied Mathematics. Google Scholar
  303. 303.
    Penrose R., Rindler W. 1984. Spinors and space-time, volume 1. Cambridge, Cambridge University Press Google Scholar
  304. 304.
    Penrose R., Rindler W. 1986. Spinors and space-time, volume 2. Cambridge, Cambridge University Press Google Scholar
  305. 305.
    Penrose R., Robinson I., Tafel J. 1997. Andrzej Mariusz Trautman. Classical and Quantum Gravity 14: A1–A8 CrossRefMathSciNetzbMATHGoogle Scholar
  306. 306.
    Perrett W., Jeffery G.B. 1923. The Principle of Relativity. London, Methuen and Company Ltd. Google Scholar
  307. 307.
    Petrov A.Z. 1954, Classification of spaces defining gravitational fields. Jubilee collection, Uchenye Zapiski Kazanskogo Universiteta, Kazan State University, Kazan, 114: 55–69. English translation with editor’s note by M.A.MacCallum and short biography by P.A. Gusev 2000. General Relativity and Gravitation 32: 1661–1685. MathSciNetGoogle Scholar
  308. 308.
    Petrov A.Z. 1969. Einstein spaces. Oxford, Pergamon Press Ltd. Google Scholar
  309. 309.
    Penzias A.A., Wilson R.W. 1965. A Measurement Of Excess Antenna Temperature At 4080 Mc/s. Astrophysical Journal Letters 142: 419–421 CrossRefADSGoogle Scholar
  310. 310.
    Pirani F.A.E. 1951. On the quantization of the gravitational field of general relativity. D.Sc. thesis, Carnegie Institute of Technology. Google Scholar
  311. 311.
    Pirani F.A.E. 1955a. On the Energy-Momentum Tensor and the Creation of Matter in Relativistic Cosmology. Proceedings of the Royal Society of Londo A 228: 455–462 CrossRefADSMathSciNetzbMATHGoogle Scholar
  312. 312.
    Pirani F.A.E. 1955b. Review of McVittie G.C. 1955. Mathematical Reviews 16: 1165 Google Scholar
  313. 313.
    Pirani F.A.E. 1956a. On the Definition of Inertial Systems in General Relativity. In Mercier and Kervaire. pp. 198–203 Google Scholar
  314. 314.
    Pirani F.A.E. 1956b. On the physical significance of the Riemann tensor. Acta Physica Polonica 15: 389–405. Reprinted in General Relativity and Gravitation 2009 41: 1215–1232 with an accompanying paper by J.L. Synge and an editorial note by A. Trautman pp. 1195–1203. ADSMathSciNetzbMATHGoogle Scholar
  315. 315.
    Pirani F.A.E. 1957a. The relativistic basis of mechanics. PhD thesis, Cambridge University Google Scholar
  316. 316.
    Pirani F.A.E. 1957b. Invariant formulation of gravitational radiation theory. Physical Review 105: 1089–1099 CrossRefADSMathSciNetzbMATHGoogle Scholar
  317. 317.
    Pirani F.A.E. 1959. Gravitational waves in general relativity IV. The gravitational field of a fast moving particle. Proceedings of the Royal Society of Londo A 252: 96–101 CrossRefADSMathSciNetzbMATHGoogle Scholar
  318. 318.
    Pirani F.A.E. 1962a. Gauss’s theorem and gravitational energy. In Lichnerowicz & Tonnelat pp. 85–91 Google Scholar
  319. 319.
    Pirani F.A.E. 1962b. Survey of gravitational radiation theory. In Recent developments in general relativity. New York, Pergamon Press, pp. 89–105 Google Scholar
  320. 320.
    Pirani F.A.E. 1962c. Gravitational Radiation. In Witten. pp. 199–226 Google Scholar
  321. 321.
    Pirani F.A.E. 2011. Interview of Felix Pirani by Dean Rickles on 2011 June 23, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/34463
  322. 322.
    Pirani F.A.E., Roche C. 1993. The Universe For Beginners. Cambridge, Icon Books. Google Scholar
  323. 323.
    Pirani F.A.E., Schild A. 1950. On the Quantization of Einstein’s Gravitational Field Equations. Physical Review 79: 986–991 CrossRefADSMathSciNetzbMATHGoogle Scholar
  324. 324.
    Pirani F.A.E., Schild A., Skinner R. 1952. Quantization of Einstein’s Gravitational Field Equations II. Physical Review 87: 452–454 CrossRefADSMathSciNetzbMATHGoogle Scholar
  325. 325.
    Price R.H. 1972a. Non-spherical pertubations of relativistic gravitational collapse I scalar and gravitational pertubations. Physical Review D 5: 2419–2438 CrossRefADSMathSciNetGoogle Scholar
  326. 326.
    Price R.H. 1972b. Non-spherical pertubations of relativistic gravitational collapse II Integer spin, zero rest-mass fields. Physical Review D 5: 2439–2454 CrossRefADSMathSciNetGoogle Scholar
  327. 327.
    Randall J. 1963. Aspects of the Life and Work of James Clerk Maxwell. In Domb. pp. 1–25 Google Scholar
  328. 328.
    Regge T., Teitelboim C. 1977. General Relativity à la string: a progress report. In Proceedings of the First Marcel Grossmann Meeting (Trieste, Italy 1975), Ruffini R. ed., Amsterdam, North-Holland, pp. 77–88 Google Scholar
  329. 329.
    Reissner H. 1916. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der Physik 50: 106–120 CrossRefADSGoogle Scholar
  330. 330.
    Rice A. 1996. Mathematics in the Metropolis: A Survey of Victorian London. Historia Mathematica 23: 376–417 CrossRefMathSciNetzbMATHGoogle Scholar
  331. 331.
    Rice A. 2006. British mathematics 1837–1901. BSHM Bulletin 21: 164–177 CrossRefMathSciNetzbMATHGoogle Scholar
  332. 332.
    Rindler W. 1956. Visual horizons in world models. Monthly Notices of the Royal Astronomical Society 116: 662–677. Reprinted in 2002, with an editorial note by A. Krasiński pp. 131–132 in General Relativity and Gravitation 34: 133–153. CrossRefADSMathSciNetzbMATHGoogle Scholar
  333. 333.
    Rindler W. 1966. Kruskal space and the uniformly accelerated frame. American Journal of Physics 34: 1174–1178 CrossRefADSGoogle Scholar
  334. 334.
    Rindler W., Trautman A. 1987. Introduction. Gravitation and Geometry (a volume in honour of Ivor Robinson). Napoli, Bibliopolis, 9–19 Google Scholar
  335. 335.
    Robinson D.C. 1974. Classification of black holes with electromagnetic fields, Physical Review D 10: 458–460 CrossRefADSGoogle Scholar
  336. 336.
    Robinson D.C. 1975a. Applications of variational principles to classical perturbation theory in general relativity. Mathematical Proceeding Cambridge Philosophical Society 78: 351–356 CrossRefADSMathSciNetzbMATHGoogle Scholar
  337. 337.
    Robinson D.C. 1975b. Uniqueness of the Kerr black hole, Physical Review Letters 34: 905–906 CrossRefADSGoogle Scholar
  338. 338.
    Robinson D.C. 1977. A simple proof of the generalization of Israel’s theorem. General Relativity and Gravitation 8: 695–698 CrossRefADSzbMATHGoogle Scholar
  339. 339.
    Robinson D.C. 2009. Four Decades of Black Hole Uniqueness Theorems. In Wiltshire, Visser & Scott. pp. 115–143 Google Scholar
  340. 340.
    Robinson D.C. 2016. Felix Arnold Edward Pirani. Physics Today 69(8): 66 CrossRefGoogle Scholar
  341. 341.
    Robinson D.C., Winicour J. 1971. Scaling behaviour of gravitational energy. Journal of Mathematical Physics 12: 995–999 CrossRefADSGoogle Scholar
  342. 342.
    Robinson D.C., Winicour J. 1972. Energy of gravitational shock waves. Journal of Mathematical Physics 13: 1435–1441 CrossRefADSGoogle Scholar
  343. 343.
    Robinson I., Trautman A. 1960. Spherical Gravitational Waves. Physical Review Letters 4:431–432 CrossRefADSzbMATHGoogle Scholar
  344. 344.
    Robinson I., Trautman A. 1962. Some spherical waves in general relativity. Proceedings of the Royal Society of London A 265: 463–473 CrossRefADSMathSciNetzbMATHGoogle Scholar
  345. 345.
    Rosen N. 1937. Plane Polarized Waves in the General Theory of Relativity. Physikalische Zeitschrift der Sowjetunion 12: 366–372 zbMATHGoogle Scholar
  346. 346.
    Rosen N. 1956. On Cylindrical Gravitational Waves. In Mercier & Kervaire. pp. 171–175 Google Scholar
  347. 347.
    Rovelli C. 2001. Notes for a brief history of quantum gravity. arXiv:gr-qc/0006061.
  348. 348.
    Roxburgh I.W. 2007. Sir Hermann Bondi KCB. Biographical Memoirs of Fellows of the Royal Society. 53: 45–61 CrossRefADSGoogle Scholar
  349. 349.
    Roxburgh I.W., Saffman P.G. 1965. The Growth of Condensations in a Newtonian Model of the Steady State Universe. Monthly Notices of the Royal Astronomical Society 129: 181–189 CrossRefADSMathSciNetzbMATHGoogle Scholar
  350. 350.
    Rudberg H. 1957. The compactification of a Lorentz space and some remarks on the foundation of the theory of conformal relativity. Dissertation, University of Uppsala. Physics Abstracts No. 30, 61 1958 Google Scholar
  351. 351.
    Ruse H.S. 1946. A.G.D.Watson’s principal directions for a Riemannian V4. Proceedings of the Edinburgh Mathematical Society 7: 144–152 CrossRefMathSciNetzbMATHGoogle Scholar
  352. 352.
    Russell-Clark R.A. 1973. The application of algebraic manipulation by computer to some problems in gravitational radiation theory. PhD thesis, University of London. Google Scholar
  353. 353.
    Sachs R.K. 1961. Gravitational waves in general relativity VI. The outgoing radiation condition. Proceedings of the Royal Society of London A 264: 309–338 CrossRefADSMathSciNetzbMATHGoogle Scholar
  354. 354.
    Sachs R.K. 1962a. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proceedings of the Royal Society of Londo A 270: 103–126 CrossRefADSMathSciNetzbMATHGoogle Scholar
  355. 355.
    Sachs R.K. 1962b. Asymptotic symmetries in Gravitational Theory. Physical Review 128: 2851–2864 CrossRefADSMathSciNetzbMATHGoogle Scholar
  356. 356.
    Sachs R.K. 1964a. The characteristic initial value problem for gravitational theory. In Infeld. pp. 93–105 Google Scholar
  357. 357.
    Sachs R.K. 1964b. Gravitational Radiation. In DeWitt C. & DeWitt B. pp. 523–562 Google Scholar
  358. 358.
    Salam A. 1975. Impact of quantum gravity theory on particle physics. In Isham, Penrose, Sciama. pp. 500–537 Google Scholar
  359. 359.
    Sánchez-Ron J.M. 1992. The Reception of General Relativity Among British Physicistsand Mathematicians (1915–1930). In Eisenstaedt & Kox, pp. 57–88 Google Scholar
  360. 360.
    Sánchez-Ron J.M. 2005 George McVittie: The Uncompromising Empiricist. In Kox & Eisenstaedt. pp. 189–221 Google Scholar
  361. 361.
    Sauer T. 2004. Albert Einstein’s 1916 Review Article on General Relativity. arXiv:physics/0405066v1.
  362. 362.
    Saulson P.R. 2011. Josh Goldberg and the physical reality of gravitational waves. General Relativity & Gravitation 43: 3289–3299 CrossRefADSMathSciNetzbMATHGoogle Scholar
  363. 363.
    Scheidegger A.E. 1953. Gravitational Motion. Reviews of Modern Physics 25: 451–468 CrossRefADSMathSciNetzbMATHGoogle Scholar
  364. 364.
    Schilpp P.A. Ed. 1970 Albert Einstein, philosopher-scientist. Illinois, Open Court-La Salle- Illinois Google Scholar
  365. 365.
    Schutz B.F. 2012. Thoughts About a Conceptual Framework for Relativistic Gravity. In Lehner, Renn and Schemmel. pp. 259–272 Google Scholar
  366. 366.
    Schwarzschild K. 1916a. Über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie. Reimer, Berlin Sitzungsberichte der Königlich-Preussischen Akademie der Wis. S. 189 ff. English translation 2008. On the Gravitational Field of a Point-Mass, According to Einstein’s Theory. The Abraham Zelmanov Journal 1: 10–19 zbMATHGoogle Scholar
  367. 367.
    Schwarzschild K. 1916b. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit. Reimer, Berlin Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften. S. pp. 424–434. English translation 2008. On the Gravitational Field of a Sphere of Incompressible Liquid, According to Einstein’s Theory. The Abraham Zelmanov Journal, 2008 1: 20–32 zbMATHGoogle Scholar
  368. 368.
    Sciama D. 1959. The unity of the Universe. London, Faber and Faber. Google Scholar
  369. 369.
    Sciama D. 1962. On the analogy between charge and spin in general relativity. In Recent developments in general relativity. New York, Pergamon Press, pp. 415–439 Google Scholar
  370. 370.
    Silvester J.R. 2010. C.W.Kilmister 1924–2010. The Mathematical Gazette 94: 529–531 CrossRefGoogle Scholar
  371. 371.
    Simms D.J., Woodhouse N.M.J. 1976. Lectures on geometric quantization. Berlin, Springer-Verlag Google Scholar
  372. 372.
    Stelle K.S. 1977. Renormalization of higher derivative quantum gravity. Physical Review D 16: 953–969 CrossRefADSMathSciNetGoogle Scholar
  373. 373.
    Stelle K.S. 1978. Classical Gravity with Higher Derivatives. General Relativity and Gravitation 9: 353–371 CrossRefADSMathSciNetGoogle Scholar
  374. 374.
    Stelle K.S., West P.C. 1978a. Minimal Auxiliary Fields for Supergravity. Physics Letters B 74: 330–332 CrossRefADSGoogle Scholar
  375. 375.
    Stelle K.S., West P.C. 1978b. Tensor Calculus for the Vector Multiplet coupled to Supergravity. Physics Letters B 77: 376–378 CrossRefADSGoogle Scholar
  376. 376.
    Stelle K.S., West P.C. 1978c. Relation between vector and scalar Multiplets and gauge invariance in supergravity. Nuclear Physic B 145: 175–188 CrossRefADSGoogle Scholar
  377. 377.
    Stelle K.S., West P.C. 1979. de Sitter gauge invariance and the geometry of the Einstein-Cartan theory. Journal of Physics A 12: L205–L210 CrossRefADSMathSciNetGoogle Scholar
  378. 378.
    Stelle K.S., West P.C. 1980. Spontaneously broken de Sitter symmetry and the gravitational holonomy group. Physical Review D 21: 1466–1488 CrossRefADSMathSciNetGoogle Scholar
  379. 379.
    Stephani H., Kramer D., Herlt E., MacCallum M., Hoenselaers C. 2003. Exact Solutions of Einstein’s Field Equations. Cambridge, Cambridge University Press Google Scholar
  380. 380.
    Strominger A. 2018. Lectures on the Infrared Structure of Gravity and Gauge Theory. Princeton, Princeton University Press Google Scholar
  381. 381.
    Synge J.L. 1955. Relativity: The Special Theory. Amsterdam, North-Holland Publishing Company. Google Scholar
  382. 382.
    Synge J.L. 1960. Relativity: The General Theory. Amsterdam, North-Holland Publishing Company. Google Scholar
  383. 383.
    Synge J.L., Schild A. 1949. Tensor Calculus. Toronto, University of Toronto Press Google Scholar
  384. 384.
    Szekeres G. 1960. On the singularities of a Riemannian manifold. Publicationes Mathematicae Debrecen 7: 285–301. Republished with an editorial note by his son Peter Szekeres in General Relativity and Gravitation 34: 1995–2016. Google Scholar
  385. 385.
    Szekeres P. 1965. The Gravitational Compass. Journal of Mathematical Physics 6: 1387–1391 CrossRefADSMathSciNetzbMATHGoogle Scholar
  386. 386.
    Szekeres P. 1966. On the Propogation of Gravitational Fields in Matter. Journal of Mathematical Physics 7: 751–761 CrossRefADSGoogle Scholar
  387. 387.
    Szekeres P. 1970. Colliding gravitational waves. Nature 228: 1183–1184 CrossRefADSGoogle Scholar
  388. 388.
    Szekeres P. 1972. Colliding gravitational waves. Journal of Mathematical Physics 13: 286–294 CrossRefADSMathSciNetGoogle Scholar
  389. 389.
    Temple G. 1923. A generalisation of professor Whitehead’s theory of relativity. Proceedings of the Physical Society of London 36: 176–193 CrossRefADSGoogle Scholar
  390. 390.
    Temple G. 1924. Central orbits in relativistic dynamics treated by the Hamilton-Jacobi method. Philosophical Magazine 48: 277–292 Google Scholar
  391. 391.
    Temple G. 1938 New systems of normal coordinates for relativistic optics. Proceedings of the Royal Society of London A 168: 122–148 CrossRefADSzbMATHGoogle Scholar
  392. 392.
    Temple G. 1939. Relativistic cosmology. Proceedings of the Physical Society (London) 51: 465–478 CrossRefADSzbMATHGoogle Scholar
  393. 393.
    Temple G. 1981. 100 years of mathematics. London, Duckworth Google Scholar
  394. 394.
    Temple G., Flint H.T. 1967. William Wilson 1875–1965. Biographical Memoirs of Fellows of the Royal Society 13: 386–391 CrossRefGoogle Scholar
  395. 395.
    Thompson A.H. 1962. The investigation of a set of weakened field equations for general relativity. PhD thesis, University of London, King’s College. Google Scholar
  396. 396.
    Thompson F.M.L. Ed. 1990. The University of London and the World of Learning 1836–1986. London, The Hambledon Press. Google Scholar
  397. 397.
    Titchmarsh E.C. 1958. George Barker Jeffery 1891–1957. Biographical Memoirs of Fellows of the Royal Society 4: 128–137 CrossRefGoogle Scholar
  398. 398.
    Tolstoy I. 1981 James Clerk Maxwell A Biography. Edinburgh, Canongate. Google Scholar
  399. 399.
    Trautman A. 1958a. Lectures on General Relativity, mimeographed notes, King’s College, London May-June 1958. Reprinted in 2002, with an editorial note by P. Chruściel in General Relativity and Gravitation 34: 721–762 CrossRefGoogle Scholar
  400. 400.
    Trautman A. 1958b. Boundary conditions at infinity for physical theories. Bulletin De l’Academie Polonaise Des Sciences. Serie Des Science 6: 403–406 MathSciNetzbMATHGoogle Scholar
  401. 401.
    Trautman A. 1958c. Radiation and boundary conditions in the theory of gravitation. Bulletin De l’Academie Polonaise Des Sciences. Serie Des Science 6: 407–410 MathSciNetzbMATHGoogle Scholar
  402. 402.
    Trautman A. 1962. Conservation laws in General Relativity. In Witten. pp. 69–198 Google Scholar
  403. 403.
    Trautman A. 1965. Foundations and current problems of general relativity. In Deser and Ford. Vol. 1, pp. 1–248 Google Scholar
  404. 404.
    Trautman A. 1966. The General Theory of Relativity. Soviet Physics, a translation of Uspekhi Fizicheskikh Nauk 89: 319–399 ADSGoogle Scholar
  405. 405.
    Unruh W.G. 1976. Note on black hole evaporation. Physical Review D 14: 870–892 CrossRefADSGoogle Scholar
  406. 406.
    van der Burg M.G.J. 1959. Axisymmetric solutions in general relativity. PhD thesis, University of London, King’s College. Google Scholar
  407. 407.
    van der Burg M.G.J. 1966. Gravitational Waves in General Relativity IX: Conserved Quantities. Proceedings of the Royal Society of London 294: 112–122 CrossRefADSGoogle Scholar
  408. 408.
    van der Burg M.G.J. 1969. Gravitational Waves in General Relativity X: Asymptotic Expansions for the Einstein-Maxwell field. Proceedings of the Royal Society of London 310: 221–230 CrossRefADSGoogle Scholar
  409. 409.
    von Freud P. 1939. Uber die Ausdrucke der Gesamtenergie und des Gesamtimpulses eines Materiellen Systems in der Allgemeinen Relativitatstheorie. Annals of Mathematics 40: 417–419 CrossRefADSMathSciNetzbMATHGoogle Scholar
  410. 410.
    Walker M. 1979 Remark on Trautman’s Radiation Condition. In Ehlers. pp. 61–62 Google Scholar
  411. 411.
    Weber J. 1961. General Relativity and Gravitational Waves. New York, Interscience Publishers Inc. Google Scholar
  412. 412.
    Weber J. 1969. Evidence for discovery of gravitational radiation. Physical Review Letters 22: 1320–1324 CrossRefADSGoogle Scholar
  413. 413.
    Weber J. 1970. Gravitational Radiation Experiments. In Carmeli, Fickler, Witten. pp. 133–143 Google Scholar
  414. 414.
    Weyl H. 1922. Space-time-matter. London, Methuen and Company Ltd. Google Scholar
  415. 415.
    Whitehead A.N. 1922. The principle of relativity, with applications to physical science. Cambridge, Cambridge University Press Google Scholar
  416. 416.
    Will C. M. 1993. Theory and Experiment in Gravitational Physics. Cambridge, Cambridge University Press, 2nd edition Google Scholar
  417. 417.
    Wilson R.J. 2017. The Gresham Professors of Geometry Part I: the first one hundred years. Part II: the next three hundred years. Bulletin of the British Society for the History of Mathematics 32: 125–148 CrossRefzbMATHGoogle Scholar
  418. 418.
    Wilson W. 1918 Relativity and gravitation. Proceedings of the Physical Society of London 31: 69–78 CrossRefADSGoogle Scholar
  419. 419.
    Wilson W. 1928 Relativity and wave mechanics. Proceedings of the Royal Society of Londo A 118: 441–448 CrossRefADSzbMATHGoogle Scholar
  420. 420.
    Witten L. 1962. Gravitation: an introduction to current research. New York, John Wiley and Sons Inc Google Scholar
  421. 421.
    Wiltshire D.L., Visser M., Scott S.M. Eds. 2009. The Kerr Spacetime: Rotating Black Holes in General Relativity. Cambridge, Cambridge University Press Google Scholar
  422. 422.
    Woodhouse N.M.J. 1973. The differential and causal structures of space-time. Journal of Mathematical Physics 14: 495–501 CrossRefADSMathSciNetzbMATHGoogle Scholar
  423. 423.
    Woodhouse N.M.J. 1979. Geometric Quantization. Oxford, Clarendon Press Google Scholar
  424. 424.
    Wright A.S. 2014. The Advantages of Bringing Infinity to a Finite Place: Penrose Diagrams as Objects of Intuition. Historical Studies in the Natural Sciences 44: 99–139 CrossRefGoogle Scholar
  425. 425.
    Yang C.W. 1974. Integral formalism for gauge field. Physical Review Letters 33: 445–447. CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Mathematics Department, King’s College LondonStrand, LondonUK

Personalised recommendations