From thermonuclear fusion to Hamiltonian chaos

Article
Part of the following topical collections:
  1. Plasma physics in the 20th century as told by players

Abstract

This paper aims at a historical and pedagogical presentation of some important contributions of the research on thermonuclear fusion by magnetic confinement to the study of Hamiltonian chaos. This chaos is defined with the help of Poincaré maps on a simple two-wave Hamiltonian system. A simple criterion for computing the transition to large scale chaos is introduced. A renormalization group approach for barriers in phase space is described pictorially. The geometrical structure underlying chaos is introduced, and then described in the adiabatic limit of Hamiltonian chaos. The issue of chaotic transport is discussed in simple limit cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdullaev, S.S 2002. “The Hamilton-Jacobi method and Hamiltonian maps”. J. Phys. A: Math. Gen. 35: 2811–2832.ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abdullaev, S.S 2004a. “On mapping models of field lines in a stochastic magnetic field”. Nucl. Fusion 44: S12–S27.ADSCrossRefGoogle Scholar
  3. 3.
    Abdullaev, S.S 2004b. “Canonical maps near separatrix in Hamiltonian systems”. Phys. Rev. E 70: 046202.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Abdullaev, S.S. 2006. Construction of Mappings for Hamiltonian Systems and Their Applications. Berlin Heidelberg: Springer-Verlag.Google Scholar
  5. 5.
    Abdullaev, S.S and G.M. Zaslavsky. 1995. “Self-similarity of stochastic magnetic field lines near the X-point”. Phys. Plasmas 2: 4533–4540.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Arioli, G and H. Koch. 2010. “The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps”. Commun. Math. Phys. 295: 415–429.ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Arnold, V.I 1963a. “Proof of a Theorem by A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian”. Russian Math. Survey 18: 13–40.ADSCrossRefGoogle Scholar
  8. 8.
    Arnold, V.I. 1963b. “Small denominators and problems of stability of motion in classical and celestial mechanics”. Russian Math. Survey 18:6: 85–191.Google Scholar
  9. 9.
    Aubry, S. 1978. The new concept of transitions by breaking of analyticity in a crystallographic model in “Solitons and Condensed Matter Physics”: 264–277. Berlin Heidelberg: Springer-Verlag.Google Scholar
  10. 10.
    Bazzani, A, C. Frye, M. Giovannozzi and C. Hernalsteens. 2014. “Analysis of adiabatic trapping for quasi-integrable area-preserving maps”. Phys. Rev. E 89: 042915–1-14.ADSCrossRefGoogle Scholar
  11. 11.
    Bellissard, J., O. Bohigas, G. Casati and D.L. Shepelyansky. 1999. “A pioneer of chaos”. Physica D 131: viii–xv.Google Scholar
  12. 12.
    Bénisti, D and D.F. Escande. 1998. “Finite range of large perturbations in hamiltonian dynamics”. J. Stat. Phys. 92: 909–972.ADSCrossRefMATHGoogle Scholar
  13. 13.
    Bénisti, D and D.F. Escande. 1998. “Nonstandard diffusion properties of the standard map”. Phys. Rev. Lett. 80: 4871–4874.ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bénisti, D and D.F. Escande. 1997. “Origin of diffusion in hamiltonian dynamics”. Phys. Plasmas 4: 1576–1581.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bruhwiler, D.L and J.R. Cary. 1989. “Diffusion of particles in a slowly modulated wave”. Physica D 40: 265–282.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cary, J.R, D.F. Escande and A.D. Verga. 1990. “Non quasilinear diffusion far from the chaotic threshold”. Phys. Rev. Lett. 65: 3132–3135.ADSCrossRefGoogle Scholar
  17. 17.
    Cary, J.R and R.T. Skodje. 1989. “Phase change between separatrix crossings”. Physica D 36: 287–316.ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cary, J.R and S.G. Shasharina. 1997. “Omnigenity and quasihelicity in helical plasma confinement systems”. Phys. Plasmas 4: 3323–3333.ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Chandre, C and H.R. Jauslin. 2002. “Renormalization-group analysis for the transition to chaos in Hamiltonian systems”. Phys. Reports 365: 1–64.ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Chirikov, B.V 1959. “Resonance processes in magnetic traps”. At. Energ. 6: 630–638 [Engl. Transl. 1960, J. Nucl. Energy Part C: Plasma Phys. 1: 253–260]Google Scholar
  21. 21.
    Chirikov, B.V. 1969. “Research concerning the theory of nonlinear resonance and stochasticity”. Preprint N 267, Institute of Nuclear Physics, Novosibirsk (1969) [Engl. Transl., CERN Trans. 71–40, Geneva, October (1971)]Google Scholar
  22. 22.
    Chirikov, B.V 1979. “A universal instability of many-dimensional oscillator systems'. Phys. Reports 52: 263–379.ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Chirikov, B.V and F.M. Izrailev. 1966. “Statistical properties of a non-linear string”. Dokl. Akad. Nauk SSSR 166: 57–59. Sov. Phys. Dokl. 11: 30–32.Google Scholar
  24. 24.
    Chirikov, B.V.F.M. Izrailev and V.A. Tayursky. 1973. “Numerical experiments on statistical behavior of dynamical systems with a few degrees of freedoms”. Comput. Phys. Commun. 5: 11–16.ADSCrossRefGoogle Scholar
  25. 25.
    Codaccioni, J.P, F. Doveil and D.F. Escande. 1982. “Stochasticity threshold for Hamiltonians with zero or one primary resonance”. Phys. Rev. Lett. 49: 1879–1883.ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    del-Castillo-Negrete, D, J.M. Greene and P.J. Morrison. 1997. “Renormalization and transition to chaos in area preserving nontwist maps”. Physica D 100: 311–329.ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Delshams, A and R. De la Llave. 2000. “KAM theory and a partial justification of Greene’s criterion for nontwist maps”. SIAM J. Math. Anal. 31: 1235–1269.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dewar, R.L 1970. “Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium”. Phys. Fluids 13: 2710–2720.ADSCrossRefMATHGoogle Scholar
  29. 29.
    Drummond, W.E and D. Pines. 1962. “Nonlinear stability of plasma oscillations”. Nuclear Fusion Suppl. 3: 1049–1057.Google Scholar
  30. 30.
    Dupree, T.H 1966. “A perturbation theory for strong plasma turbulence”. Phys. Fluids 9: 1773–1782.ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Elskens, Y 2012. “Gaussian convergence for stochastic acceleration of N particles in the dense spectrum limit”. J. Stat. Phys. 148: 591–605.ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Elskens, Y and D.F. Escande. 1991. “Slowly pulsating separatrices sweep homoclinic tangles where islands must be small : an extension of classical adiabatic theory”. Nonlinearity 4: 615–667.ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Elskens, Y and D.F. Escande. 1993. “Infinite resonance overlap : a natural limit of Hamiltonian chaos”. Physica D 62: 66–74.ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Elskens, Y. and D.F. Escande. 2003. “Microscopic dynamics of plasmas and chaos”.Institute of Physics, Bristol.Google Scholar
  35. 35.
    Elskens, Y and E. Pardoux. 2010. “Diffusion limit for many particles in a periodic stochastic acceleration field”. Ann. Appl. Prob. 20: 2022–2039.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Escande, D.F 1982a. “Renormalization for stochastic layers”. Physica D 6: 119–125.ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Escande, D.F 1985. “Stochasticity in classical hamiltonian systems: universal aspects”. Phys. Rep. 121: 165–261.ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Escande, D.F. 2013. How to face the complexity of plasmas? in “From Hamiltonian Chaos to Complex Systems”: 109–157. Berlin Heidelberg: Springer-Verlag.Google Scholar
  39. 39.
    Escande, D.F 2016. “Contributions of plasma physics to chaos and nonlinear dynamics”. Plasma Phys. Control. Fusion 58: 113001 (17 pp). Also https://arxiv.org/abs/1604.06305 ADSCrossRefGoogle Scholar
  40. 40.
    Escande, D.F and F. Doveil. 1981a. “Renormalization method for the onset of stochasticity in a hamiltonian system”. Phys. Lett. A 83: 307–310.ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Escande, D.F, and F. Doveil. 1981b. “Renormalization method for computing the threshold of large-scale stochastic instability in two degrees of freedom hamiltonian systems”. J. Stat. Phys. 26: 257–284.ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Escande, D.F and Y. Elskens. 2002b. “Proof of quasilinear equations in the chaotic regime of teh weak warm beam instability”. Phys. Lett. A 302: 110–118.ADSCrossRefGoogle Scholar
  43. 43.
    Escande, D.F, H. Kantz, R. Livi and S. Ruffo. 1994. “Self consistent check of the validity of Gibbs calculus using dynamical variables”. J. Stat. Phys. 76: 605–626.ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Escande, D.F, M.S. Mohamed-Benkadda and F. Doveil. 1984. “Threshold of global stochasticity”. Phys. Lett. A 101: 309–313.ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Escande, D.F and F. Sattin. 2007. “When can the Fokker-Planck equation describe anomalous or chaotic transport?”. Phys. Rev. Lett. 99: 185005-1-4.ADSCrossRefGoogle Scholar
  46. 46.
    Escande, D.F and F. Sattin. 2008. “When can the Fokker-Planck equation describe anomalous or chaotic transport? Intuitive aspects”. Plasma Phys. Control. Fusion 50: 124023 (8 p).ADSCrossRefGoogle Scholar
  47. 47.
    Froeschlé, C 1970. “Numerical studies of dynamical systems with three degrees of freedom”. Astron. and Astrophys. 9: 15–28.ADSMATHGoogle Scholar
  48. 48.
    Gonzalez-Enriquez, A, A. Haro and R. De la Llave. 2014. “Singularity Theory for Non-Twist KAM Tori”. Mem. Amer. Math. Soc. 227: 1067.MathSciNetMATHGoogle Scholar
  49. 49.
    Greene, J.M 1979. “A Method for Computing the Stochastic Transition”. J. Math. Phys. 20: 1183–1201.ADSCrossRefGoogle Scholar
  50. 50.
    Greene, J.M, R.S. MacKay and J. Stark. 1986. “Boundary circles for area-preserving maps”. Physica D 21: 267–295.ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Hénon, M and C. Heiles. 1964. “The applicability of the third integral of motion: Some numerical experiments”. Astrophys. J. 69: 73–79.MathSciNetGoogle Scholar
  52. 52.
    Hénon, M 1966. “Sur la topologie des lignes de courant dans un cas particulier”. C.R. Seances Acad. Sci. A 262: 312–314.Google Scholar
  53. 53.
    Howard, J.E and S.M. Hohs. 1984. “Stochasticity and reconnection in Hamiltonian systems”. Phys. Rev. A 29: 418–421.ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Koch, H 2004. “A renormalization group fixed point associated with the breakup of golden invariant tori”. Discrete and Continuous Dynamical Systems-Series A 11: 881–909.MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Kolmogorov, A.N 1954. “On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian”. Dokl. Akad. Nauk. SSR 98: 527–530.MATHGoogle Scholar
  56. 56.
    Kolomenskii, A.A 1960. “On the electrodynamics of a gyrotropic medium”. Zh. Tekh. Fiz. 30: 1347 [Engl. Transl. 1960 Sov. Phys. Tech. Phys. 5: 1278].Google Scholar
  57. 57.
    Kruskal, M.D. 1952. “Some Properties of Rotational Transforms” Project Matterhorn Report NY0-998, PM-S-5, Princeton University Forrestal Research Center, National Technical Information Service Doc. No. PB200-100659.Google Scholar
  58. 58.
    Kruskal, Martin 1962. “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic”. J. Math. Phys. 3: 806–828.ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Krylov, N. and N.N. Bogolyubov. 1936. Introduction to nonlinear mechanics. in Russian [Translation: 1974 Princeton University Press, Princeton].Google Scholar
  60. 60.
    Laval, G and D. Pesme. 1984. “Self-consistency effects in quasilinear theory : a model for turbulent trapping”. Phys. Rev. Lett. 53: 270–273.ADSCrossRefGoogle Scholar
  61. 61.
    MacKay, R.S 1983. “A renormalisation approach to invariant circles in area-preserving maps”. Physica D 7: 283–300.ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    MacKay, R.S, J.D. Meiss and I.C. Percival. 1984a. “Stochasticity and transport in Hamiltonian systems”. Phys. Rev. Lett. 52: 697–700.ADSMathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    MacKay, R.S, J.D. Meiss and I.C. Percival. 1987. “Resonances in area preserving maps”. Physica D 27: 1–20.ADSMathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    MacKay, R.S 1989. “A criterion for non-existence of invariant tori for Hamiltonian systems”. Physica D 36: 64–82.ADSMathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    MacKay, R.S. 1995. “Three topics in Hamiltonian dynamics”. Dynamical Systems and Chaos. Singapore: World Scientific, edited by Y. Aizawa, S. Saito, K. Shiraiwa, Vol. 2, pp. 34–43.Google Scholar
  66. 66.
    Meiss, J.D 2015. “Thirty years of turnstiles and transport”. Chaos 25: 097602-1-16.ADSCrossRefGoogle Scholar
  67. 67.
    Meiss, J.D, J.R. Cary, C. Grebogi, J.D. crawford, A.N. Kaufman and H.D. Abarbanel. 1983. “ Correlations of periodic, area-preserving maps”. Physica D 6: 375–384.ADSMathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Melekhin, V.N 1975. “Phase dynamics of particles in a microtron and the problem of stochastic instability of nonlinear systems”. Zh. Eksp. Teor. Fiz. 68: 1601–1613.Google Scholar
  69. 69.
    Menyuk, C.R 1985. “Particle motion in the field of a modulated wave”. Phys. Rev. A, 31: 3282–3290.ADSCrossRefGoogle Scholar
  70. 70.
    Morrison, P.J 2000. “Magnetic field lines, Hamiltonian dynamics, and nontwist systems”. Phys. Plasmas 7: 2279–2289.ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Moser, J.K 1962. “On invariant curves of area-preserving mappings of an annulus”. Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1: 1–20.MathSciNetMATHGoogle Scholar
  72. 72.
    Neishtadt, A.I, V.V. Sidorenko and D.V. Treschev. 1997. “Stable periodic motion in the problem on passage through a separatrix”. Chaos 7: 1–11.ADSMathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Ottaviani, M 1992. “Scaling laws of test particle transport in twodimensional turbulence”. Europhys. Lett. 20: 111–116.ADSCrossRefGoogle Scholar
  74. 74.
    Percival, I.C. 1980. Variational principles for invariant tori and cantori in “American Institute of Physics Conference Series” 57: 302–310. Berlin Heidelberg: Springer-Verlag.Google Scholar
  75. 75.
    Rechester, A.B and T.H. Stix. 1976. “Magnetic Braiding Due to Weak Asymmetry”. Phys. Rev. Lett. 36: 587–591.ADSCrossRefGoogle Scholar
  76. 76.
    Rosenbluth, M.N, R.Z. Sagdeev and J.B. Taylor. 1966. “Destruction of magnetic field surfaces by magnetic field irregularities”. Nucl. Fusion 6: 297–300.CrossRefGoogle Scholar
  77. 77.
    Tsunoda, S.I, F. Doveil and J.H. Malmberg. 1991. “Experimental test of quasilinear theory”. Phys. Fluids B 3: 2747–57ADSCrossRefGoogle Scholar
  78. 78.
    Vedenov, A.A, E.P. Velikhov and R.Z. Sagdeev. 1962. “Quasilinear theory of plasma oscillations”. Nuclear Fusion Suppl. 2: 465–475.MATHGoogle Scholar
  79. 79.
    Vlad, M, F. Spineanu, J.H. Misguich and R. Balescu. 1998. “Diffusion with intrinsic trapping in two-dimensional incompressible stochastic velocity fields”. Phys. Rev. E 58: 7359–7368.ADSCrossRefGoogle Scholar
  80. 80.
    Vlad, M, F. Spineanu, J.H. Misguich, J.-D. Reuss, R. Balescu, K. Itoh and S.-I. Itoh. 2004. “Lagrangian versus Eulerian correlations and transport scaling”. Plasma Phys. Control. Fusion 46: 1051–1063.ADSCrossRefGoogle Scholar
  81. 81.
    Vlad, M, F. Spineanu and S. Benkadda. 2006. “Impurity pinch from a ratchet process”. Phys. Rev. Lett. 96: 085001.ADSCrossRefGoogle Scholar
  82. 82.
    Vlad, M and F. Spineanu. 2015. “Trajectory statistics and turbulence evolution”. Chaos, Solitons and Fractals 81: 463–472.ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    Zaslavsky, G.M and S.S. Abdullaev. 1995. “Scaling properties and anomalous transport of particles inside the stochastic layer”. Phys. Rev. E 51: 3901–3910.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS, PIIM, UMR 7345MarseilleFrance

Personalised recommendations