Skip to main content
Log in

Self-consistent check of the validity of Gibbs calculus using dynamical variables

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The high- and low-energy limits of a chain of coupled rotators are integrable and correspond respectively to a set of free rotators and to a chain of harmonic oscillators. For intermediate values of the energy, numerical calculations show the agreement of finite time averages of physical observables with their Gibbsian estimate. The boundaries between the two integrable limits and the statistical domain are analytically computed using the Gibbsian estimates of dynamical observables. For large energies the geometry of nonlinear resonances enables the definition of relevant 1.5-degree-of-freedom approximations of the dynamics. They provide resonance overlap parameters whose Gibbsian probability distribution may be computed. Requiring the support of this distribution to be right above the large-scale stochasticity threshold of the 1.5-degree-of-freedom dynamics yields the boundary at the large-energy limit. At the low-energy limit, the boundary is shown to correspond to the energy where the specific heat departs from that of the corresponding harmonic chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ciccotti and W. G. Hoover, eds.,Molecular Dynamics Simulation of Statistical-Mechanical Systems (North-Holland, Amsterdam, 1986); G. Ciccotti, D. Frenkel, and I. R. McDonald, eds.,Simulation of Liquids and Solids (North-Holland, Amsterdam, 1987).

    Google Scholar 

  2. R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani,J. Stat. Phys. 48:539 (1987).

    Article  Google Scholar 

  3. G. Benettin, L. Galgani, and A. Giorgilli,Nuovo Cimento B 89:89, 103 (1985).

    Google Scholar 

  4. B. V. Chirikov,Phys. Rev. 52:263 (1979).

    Google Scholar 

  5. J. L. Lebowitz, J. K. Percus, and L. Verlet,Phys. Rev. 153:250 (1967).

    Article  Google Scholar 

  6. Y. Elskens, private communication.

  7. D. F. Escande,Phys. Rep. 121:166 (1985).

    Article  Google Scholar 

  8. B. Peters, Memoire de Maitrise, Université de Provence, Marseille (1992).

    Google Scholar 

  9. V. I. Arnol'd,Dokl. Akad. Nauk SSSR 156:9 (1964); L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, CARR Report 15/92 (1992).

    Google Scholar 

  10. H. Kantz, R. Livi, and S. Ruffo,J. Stat. Phys. 76:627 (1994).

    Google Scholar 

  11. A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic Dynamics (Springer, 1992, Chapter 6.5b, pp. 443ff.

  12. C. R. Menyuk,Phys. Rev. A 31:3282 (1985); Y. Elskens and D. F. Escande,Physica D 62:66 (1992).

    Article  Google Scholar 

  13. S. Ruffo, Hamiltonian dynamics and phase transitions, inTransport, Chaos and Plasma Physics (World Scientific, Singapore, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escande, D., Kantz, H., Livi, R. et al. Self-consistent check of the validity of Gibbs calculus using dynamical variables. J Stat Phys 76, 605–626 (1994). https://doi.org/10.1007/BF02188677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188677

Key Words

Navigation