Skip to main content
Log in

Structure–property modeling of coumarins and coumarin-related compounds in pharmacotherapy of cancer by employing graphical topological indices

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Coumarins, a subgroup of colorless and crystalline oxygenated heterocyclic compounds originally discovered in the plant Dipteryx odorata, were the subject of a recent study investigating their quantitative structure–activity relationship (QSAR) in cancer pharmacotherapy. This study utilized graph theoretical molecular descriptors, also known as topological indices, as a numerical representation method for the chemical structures embedded in molecular graphs. These descriptors, derived from molecular graphs, play a pivotal role in quantitative structure–property relationship (QSPR) analysis. In this paper, intercorrelation between the Balban index, connective eccentric index, eccentricity connectivity index, harmonic index, hyper Zagreb index, first path Zagreb index, second path Zagreb index, Randic index, sum connectivity index, graph energy and Laplacian energy is studied on the set of molecular graphs of coumarins. It is found that the pairs of degree-based indices are highly intercorrelated. The use of these molecular descriptors in structure–boiling point modeling was analyzed. Finally, the curve-linear regression between considered molecular descriptors with physicochemical properties of coumarins and coumarin-related compounds is obtained.

Graphical abstract

Some of the coumarin-related anti-cancer compounds considered in this study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

There are no data associated with this manuscript.

References

  1. M. Arockiaraj, F.J.H. Campena, A.B. Greeni, M.U. Ghani, S. Gajavalli, F. Tchier, A.Z. Jan, QSPR analysis of distance-based structural indices for drug compounds in tuberculosis treatment. Heliyon 10, e23981 (2024)

    Article  Google Scholar 

  2. M. Arockiaraj, A.B. Greeni, A.A. Kalaam, Comparative analysis of reverse degree and entropy topological indices for drug molecules in blood cancer treatment through QSPR regression models. Polycycl. Aromat. Compd. (2023). https://doi.org/10.1080/10406638.2023.2271648

    Article  Google Scholar 

  3. J.S. Junias, J. Clement, M.P. Rahul, M. Arockiaraj, Two-dimensional phthalocyanine frameworks: topological descriptors, predictive models for physical properties and comparative analysis of entropies with different computational methods. Comput. Mater. Sci. 235, 112844 (2024)

    Article  Google Scholar 

  4. D. Paul, M. Arockiaraj, K. Jacob, J. Clement, Multiplicative versus scalar multiplicative degree based descriptors in QSAR/QSPR studies and their comparative analysis in entropy measures. Eur. Phys. J. Plus 138, 323 (2023)

    Article  Google Scholar 

  5. J. Bruneton, Immunotoxicity of Epicutaneously Applied Anti-Coagulant Rodenticide Warfarin (Intercept Ltd., Hampshire, 1999), pp.245–263

    Google Scholar 

  6. J. Bruneton, Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd edn. (Intercept Ltd., Hampshire, 1999), pp.263–277

    Google Scholar 

  7. A. Lacy, R. O’Kennedy, Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des. 10, 3797–3811 (2004)

    Article  Google Scholar 

  8. T. Ojala, Biological Screening of Plant Coumarins. Ph.D. Thesis (University of Helsinki, Helsinki, Finland, 2001)

  9. B. Lake, Synthesis & pharmacological investigation of 4-hydroxy coumarin derivatives & shown as anti-coagulant. Food Chem. Tox. 3, 412–423 (1999)

    Google Scholar 

  10. R.D.H. Murray, J. Mendez, S.A. Brown, The Natural Coumarins Occurrence, Chemistry and Biochemistry, Chichester (John Wiley and Sons Ltd., New York, 1982)

    Google Scholar 

  11. D. Cooke, B. Fitzpatrick, R. O’ Kennedy, T. McCormack, D. Egan, Coumarin: Biochemical Profile and Recent Developments, vol. 3 (John Wiley & Sons, New York, 1997), pp.311–322

    Google Scholar 

  12. D. Cooke, R. O’Kennedy, Comparison of the tetrazolium salt assay for succinate dehydrogenase with the cytosensor microphysiometer in the assessment of compound toxicities. Anal. Biochem. 274, 188–194 (1999)

    Article  Google Scholar 

  13. K.C. Fylaktakidou, D.J. Hadipavlou-Litina, K.E. Litinas, D.N. Nicolaides, Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr. Pharm. Des. 10, 3813–3833 (2004)

    Article  Google Scholar 

  14. D.R. Vianna, L. Hamerski, F. Figueiro, A. Bernardi, L.C. Visentin, E.N. Pires, H.F. Teixeira, C.G. Salbego, V.L. Eifler-Lima, A.M. Battastini et al., Selective cytotoxicity and apoptosis induction in glioma cell lines by 5-oxygenated-6,7-methylenedioxycoumarins from Pterocaulon species. Eur. J. Med. Chem. 57, 268–274 (2012)

    Article  Google Scholar 

  15. R.G. Harvey, C. Cortex, T.P. Ananthanarayan, S. Schmolka, A new coumarin synthesis and its utilization for the synthesis of polycyclic coumarin compounds with anticarcinogenic properties. J. Org. Chem. 53, 3936–3943 (1988)

    Article  Google Scholar 

  16. I. Kostova, G. Momekov, T. Tzanova, M. Karaivanova, Synthesis, characterization, and cytotoxic activity of new lanthanum (III) complexes of bis-coumarins. Bioinorg. Chem. Appl. 25651, 1–9 (2006)

    Google Scholar 

  17. M.A. Al-Haiza, M.S. Mostafa, M.Y. El-Kady, Synthesis and biological evaluation of some new coumarin derivatives. Molecules 8, 275–286 (2003)

    Article  Google Scholar 

  18. B. Musiciki, A.M. Periers, P. Laurin, D. Ferroud, Y. Benedetti, S. Lachaud, F. Chatreaux, J.L. Haesslein, A. Lltis, C. Pierre et al., Improved antibacterial activities of coumarin antibiotics bearing 5\(^\prime \),5\(^\prime \)-dialkylnoviose: biological activity of RU79115. Bioorg. Med. Chem. Lett. 10, 1695–1699 (2000)

    Article  Google Scholar 

  19. E. Kupeli, A. Tosun, E. Yesilada, Anti-inflammatory and Antinociceptive Activities of Seseli L. species (Apiaceae) growing in Turkey. J. Ethnopharmacol. 104, 310–314 (2006)

    Article  Google Scholar 

  20. A. Tosun, E. Kupeli, E. Yesilada, Anti-inflammatory and antinociceptive activity of coumarins from Seseli gummiferum subsp. corymbosum (Apiaceae). Z. Nat. C 64c, 56–62 (2009)

    Google Scholar 

  21. J.R. Hoult, M. Paya, Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen. Pharmacol. 27, 713–722 (1996)

    Article  Google Scholar 

  22. J. Jung, J. Kin, O.S. Park, A convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one. Synth. Commun. 31, 1195–1200 (2001)

    Article  Google Scholar 

  23. G.R. Madhavan, V. Balraju, B. Malleshasm, R. Chakrabarti, V.B. Lohray, Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorg. Med. Chem. Lett. 13, 2547–2551 (2003)

    Article  Google Scholar 

  24. R.S. Moffet, Central nervous system depressants .VII. pyridyl coumarins. J. Med. Chem. 7, 446–449 (1964)

    Article  Google Scholar 

  25. M. Paya, B. Halliwell, J.R. Hoult, Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem. Pharmacol. 44, 205–214 (1992)

    Article  Google Scholar 

  26. R.D. Murray, The naturally occurring coumarins. Fortschr. Chem. Org. Naturst 83, 1 (2002)

    Google Scholar 

  27. Y. Li, A. Aslam, S. Saeed, G. Zhang, S. Kanwal, Targeting highly resisted anticancer drugs through topological descriptors using VIKOR multi-criteria decision analysis. Eur. Phys. J. Plus. (2022). https://doi.org/10.1140/epjp/s13360-022-03469-x

    Article  Google Scholar 

  28. S.M. Cohen, L.B. Ellwein, Genetic errors, cell proliferation, and carcinogenesis. Cancer Res. 51, 6493–6505 (1991)

    Google Scholar 

  29. J.H. Fentem, J.R. Fry, Species differences in the metabolism and hepatotoxicity of coumarin. Comp. Biochem. Physiol. C 104, 1–8 (1993)

    Article  Google Scholar 

  30. B. Basavanagoud, S. Policepatil, Topological indices of some anticancer drugs. Ratio. Math. 42, 29–59 (2022)

    Google Scholar 

  31. S. Kanwal, Y. Farooq, M.K. Siddiqui, N. Idrees, A. Razzaque, F.B. Petros, Study the behavior of drug structures via chemical invariants using TOPSIS and SAW. Comput. Math. Methods Med. (2023). https://doi.org/10.1155/2023/4262299

    Article  Google Scholar 

  32. S. Mondal, A. Dey, N. De, A. Pal, QSPR analysis of some novel neighbourhood degree-based topological descriptors. Complex Intell. Syst. 7(2), 977–996 (2021)

    Article  Google Scholar 

  33. H.S. Ramane, K.P. Narayankar, S.S. Shirkol, A.B. Ganagi, Terminal Wiener index of line graphs. MATCH Commun. Math. Comput. Chem. 69, 775–782 (2013)

    MathSciNet  Google Scholar 

  34. S. Shirkol, H.S. Ramane, S.V. Patil, On the acharya index of a graph. Ann. Pure Appl. Math. 11(1), 73–77 (2016)

    Google Scholar 

  35. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1(69), 17–20 (1947)

    Article  Google Scholar 

  36. K. Xu, M. Liu, K.C. Das, I. Gutman, B. Fortula, A survey on graphs extremal with respect to distance based topological indices. Match Commun. Math. Comput. Chem. 71, 461–508 (2014)

    MathSciNet  Google Scholar 

  37. G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of graphs. MATCH Commun. Math. Comput. Chem. 60, 461–472 (2008)

    MathSciNet  Google Scholar 

  38. B. Zhou, N. Trinajstic, Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs. Internet Electron. J. Mol. Des. 6, 375–384 (2007)

    Google Scholar 

  39. A.T. Balaban, Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Estrada, E. Uriarte, Recent advances on the role of topological indices in drug discovery research. Curr. Med. Chem. 8(13), 1573–1588 (2001)

    Article  Google Scholar 

  41. R.R. Huang, S. Aftab, S. Noureen, A. Aslam, Analysis of porphyrin, PETIM and zinc porphyrin dendrimers by atom-bond sum-connectivity index for drug delivery. Int. J. Interface Between Chem. Phys. (2023). https://doi.org/10.1080/00268976.2023.2214073

  42. W. Gao, W.F. Wang, M.R. Farahani, Topological indices study of molecular structure in anticancer drugs. J. Chem. (2016). https://doi.org/10.1155/2016/3216327

    Article  Google Scholar 

  43. M.C. Shanmukha, N.S. Basavarajappa, K.C. Shilpa, A. Usha, Degreebased topological indices on anticancer drugs with QSPR analysis. Heliyon 6, 1–9 (2020)

    Google Scholar 

  44. A.T. Balaban, Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 55, 199–206 (1983)

    Article  Google Scholar 

  45. Yu. Guihai, Lihua Feng, On connective eccentricity index of graphs. MATCH Commun. Math. Comput. Chem. 69(3), 611–628 (2013)

    MathSciNet  Google Scholar 

  46. V. Sharma, R. Goswami, A.K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci. 37, 273–282 (1997)

    Article  Google Scholar 

  47. L. Zhong, The harmonic index on graphs. Appl. Math. Lett. 25, 561–566 (2012)

    Article  MathSciNet  Google Scholar 

  48. G.H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper Zagreb index of graph operations. Iran. J. Math. Chem. 4, 213–220 (2013)

    Google Scholar 

  49. D. Vukicevic, S. Nikolic, N. Trinajstic, On the path-Zagreb matrix. J. Math. Chem. 45, 538–543 (2009)

    Article  MathSciNet  Google Scholar 

  50. M. Randic, On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  51. Kinkar Ch. Das, Sumana Das, Bo. Zhou, Sum-connectivity index of a graph. Front. Math. China 11, 47–54 (2016)

    Article  MathSciNet  Google Scholar 

  52. I. Gutman, The energy of a graph: old and new results, in Algebraic Combinatorics and Applications. ed. by A. Betten, A. Kohnert, R. Laue, A. Wassermann (Springer-Verlag, Berlin, 2001), pp.196–211

    Chapter  Google Scholar 

  53. I. Gutman, B. Zhou, Laplacian energy of a graph. Linear Algebra Appl. 414, 29–37 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Sakander Hayat is supported by UBD Faculty Research Grant (No. UBD/RSCH/1.4/FICBF(b)/2022/053). Sujata T. Timmanaikar’s research is catalyzed and supported by Vision Group on Science and Technology (VGST), Karnataka Science and Technology Promotion Society (KSTePS), Department of Science and Technology, Government of Karnataka, with scheme RGS/FSanctioned Year:2021-22. National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (622260-101).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Sakander Hayat.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmanaikar, S.T., Hayat, S., Hosamani, S.M. et al. Structure–property modeling of coumarins and coumarin-related compounds in pharmacotherapy of cancer by employing graphical topological indices. Eur. Phys. J. E 47, 31 (2024). https://doi.org/10.1140/epje/s10189-024-00427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00427-6

Navigation