Skip to main content
Log in

Fundamental aspects of the molecular topology of fuchsine acid dye with connection numbers

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Fuchsine acid serves as a supramolecular dye in Masson’s trichrome stain, finding extensive applications in histology. It is also utilized with picric acid in Van Gieson’s method to reveal red collagen fibers and in Masson’s trichrome to highlight smooth muscle in contrast to collagen. Beyond these applications, it plays a crucial role in electronic fields and photonic devices as an organic semiconductor. Therefore, investigating and predicting the complex molecular structure of fuchsine acid becomes essential, serving as the foundation for understanding its physicochemical features. This article employs topological modeling, specifically a connection number edge partition, to explore the supramolecular nature of fuchsine acid. Closed formulae for key degree-based molecular descriptors are derived, aiming to illuminate the effectiveness of these descriptors for QSAR and QSPR analyses.

Graphic abstract

The 2D structure of fuchsine graph with connection numbers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

There are no data associative with this manuscript.

References

  1. L. Von Collatz, U. Sinogowitz, Spektren endlicher grafen. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 21(1), 63–77 (1957)

    Article  MathSciNet  Google Scholar 

  2. Y.-M. Chu, M. Abid, M.I. Qureshi, A. Fahad, A. Aslam, Irregular topological indices of certain metal organic frameworks. Main Group Met. Chem. 44(1), 73–81 (2021)

    Article  Google Scholar 

  3. I. Gutman, Topological indices and irregularity measures. Bulletin 8, 469–475 (2018)

    MathSciNet  Google Scholar 

  4. E. Estrada, D. Bonchev, Chemical Graph Theory, Handbook of Graph Theory (Taylor & Francis, Milton Park, Abingdon, 2013)

    Google Scholar 

  5. Ali Al Khabyah, Mathematical aspects and topological properties of two chemical networks. AIMS Math. 8(2), 4666–4681 (2023)

    Article  MathSciNet  Google Scholar 

  6. S. Zaman, M. Jalani, A. Ullah, G. Saeedi, Structural analysis and topological characterization of sudoku nanosheet. J. Math. 2022, 5915740 (2022)

    Article  MathSciNet  Google Scholar 

  7. A.T. Balaban, Chemical graph theory and the Sherlock Holmes principle. Int. J. Philos. Chem. 9, 107–137 (2013)

    Google Scholar 

  8. S. Ahmad, M.A. Ali, A. Haider, Closed form of the omega and the sadhana polynomials of C4C6C8 nanosheet. J. Chem. Pharm. Res. 10(2), 164–169 (2018)

    Google Scholar 

  9. I. Javaid, H. Benish, A. Haider, M. Salman, Determining and distinguishing number of hypergraphs. U.P.B. Sci. Bull. Ser. A 76(2), 75–84 (2014)

    MathSciNet  Google Scholar 

  10. M. Irfan, H. Ur Rehman, H. Almusawa, S. Rasheed, I.A. Baloch, M-polynomials and topological indices for line graphs of chain silicate network and H-naphtalenic nanotubes. J. Math. 2021, 5551825 (2021). https://doi.org/10.1155/2021/5551825

    Article  MathSciNet  Google Scholar 

  11. A.S. Alali, S. Ali, N. Hassan, A.M. Mahnashi, Y. Shang, A. Assiry, Algebraic structure graphs over the commutative ring z m: exploring topological indices and entropies using M-polynomials. Mathematics 11(18), 3833 (2023)

    Article  Google Scholar 

  12. R. Ismail, F. Ali, R. Qasim, M. Naeem, W.K. Mashwani, S. Khan, Several Zagreb indices of power graphs of finite non-abelian groups. Heliyon 9(9) (2023)

  13. R. Ismail, S. Hameed, U. Ahmad, K. Majeed, M. Javaid, Unbalanced signed graphs with eigenvalue properties. AIMS Math. 8(10), 24751–24763 (2023)

    Article  MathSciNet  Google Scholar 

  14. M.P. Rahul, J. Clement, QSPR analysis of carbon allotropes by employing molecular descriptors and information entropies. Ain Shams Eng. J. 14(11), 102542 (2023)

    Article  Google Scholar 

  15. K. Jacob, J. Clement, Zeolite ATN: topological characterization and predictive analysis on potential energies using entropy measures. J. Mol. Struct. 1299, 137101 (2024)

    Article  Google Scholar 

  16. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  17. S. Zaman, A. Kamboh, A. Ullah, J.B. Liu, Development of some novel resistance distance based topological indices for certain special types of graph networks. Phys. Scr. 98(12), 125250 (2023)

    Article  ADS  Google Scholar 

  18. S. Zaman, Spectral analysis of three invariants associated to random walks on rounded networks with 2 n-pentagons. Int. J. Comput. Math. 99(3), 465–485 (2022)

    Article  MathSciNet  Google Scholar 

  19. Q. Li, S. Zaman, W. Sun, J. Alam, Study on the normalized Laplacian of a pentagraphene with applications. Int. J. Quantum Chem. 120(9), e26154 (2020)

    Article  Google Scholar 

  20. S. Zaman, A.N. Koam, A. Al Khabyah, A. Ahmad, The Kemeny’s constant and spanning trees of hexagonal ring network. Comput. Mater. Contin. 73(3) (2022)

  21. S. Zaman, A. Ullah, Kemeny’s constant and global mean first passage time of random walks on octagonal cell network. Math. Methods Appl. Sci. 46(8), 9177–9186 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  22. X. Yu, S. Zaman, A. Ullah, G. Saeedi, X. Zhang, Matrix analysis of hexagonal model and its applications in global mean-first-passage time of random walks. IEEE Access 11, 10045–10052 (2023)

    Article  Google Scholar 

  23. T. Yan, Z. Kosar, A. Aslam, S. Zaman, A. Ullah, Spectral techniques and mathematical aspects of K 4 chain graph. Phys. Scr. 98(4), 045222 (2023)

    Article  ADS  Google Scholar 

  24. S. Zaman, M. Mustafa, A. Ullah, M.K. Siddiqui, Study of mean-first-passage time and Kemeny’s constant of a random walk by normalized Laplacian matrices of a penta-chain network. Eur. Phys. J. Plus 138(8), 770 (2023)

    Article  Google Scholar 

  25. M. Randić, On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  26. H. Hosoya, On some counting polynomials in chemistry. Discret. Appl. Math. 19, 239–257 (1988)

    Article  MathSciNet  Google Scholar 

  27. A.T. Balaban et al., Chemical graphs: VIII. Graph-theoretical models for branched systems with single bonds. Rev. Roum. Chim. 18, 37–47 (1973)

    Google Scholar 

  28. I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17(4), 535–538 (1972)

    Article  ADS  Google Scholar 

  29. E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of Alkanes. Indian J. Chem. 37, 1369–1376 (1998)

    Google Scholar 

  30. A. Ghorbani, M.A. Hosseinzadeh, Computing \(ABC_4\) index of nanostars dendrimers. Optoelectron. Adv. Mater. Rapid Commun. 4(9), 1419–1422 (2010)

    Google Scholar 

  31. D. Vukicevic, Bond additive modeling 2. Mathematical properties of max-min Rodeg index. Croat. Chem. Acta 83(3), 261–273 (2010)

    Google Scholar 

  32. B. Furtula, A. Graovac, D. Vukicevic, Augmented Zagreb index. J. Math. Chem. 48(2), 370–380 (2010)

    Article  MathSciNet  Google Scholar 

  33. S. Fajtlowicz, On conjectures of Graffiti II. Congr. Numer. 60, 187–197 (1987)

    MathSciNet  Google Scholar 

  34. D. Vukicevic, M. Gasperov, Bond additive modeling 1. Adriatic indices. Croat. Chem. Acta 83(3), 243–260 (2010)

    Google Scholar 

  35. G.H. Shirdel, H. Rezapour, A.M. Sayadi, The Hyper-Zagreb Index of Graph Operations (2013), pp. 213–220

  36. A. Ali, N. Trinajstic, A novel/old modification of the first Zagreb index. Mol. Inf. 37(6–7), 1800008 (2018)

    Article  Google Scholar 

  37. S. Zaman, H.S.A. Yaqoob, A. Ullah, M. Sheikh, QSPR analysis of some novel drugs used in blood cancer treatment via degree based topological indices and regression models. Polycycl. Aromat. Comps. 1–17 (2023)

  38. A. Ullah, S. Zaman, A. Hamraz, M. Muzammal, On the construction of some bioconjugate networks and their structural modeling via irregularity topological indices. Eur. Phys. J. E 46(8), 72 (2023)

    Article  Google Scholar 

  39. X. Zhang, Z.S. Bajwa, S. Zaman, S. Munawar, D. Li, The study of curve fitting models to analyze some degree-based topological indices of certain anti-cancer treatment. Chem. Pap. 1–14 (2023)

  40. M. Javaid, U. Ali, K. Siddiqui, Novel connection based Zagreb indices of several wheel-related graphs. Comput. J. Comb. Math. 1, 1–28 (2021)

    Google Scholar 

  41. A. Sattar, M. Javaid, E. Bonyah, Connection-based multiplicative Zagreb indices of dendrimer nanostars. J. Math. 2021 (2021)

  42. A. Sattar, M. Javaid, E. Bonyah, On the studies of dendrimers via connection-based molecular descriptors. Math. Probl. Eng. 2022, 1–13 (2022)

    Article  Google Scholar 

  43. A. Sattar, M. Javaid, E. Bonyah, Computing connection-based topological indices of dendrimers. J. Chem. 2022, 1–15 (2022)

    Article  Google Scholar 

  44. M. Javaid, A. Sattar, On topological indices of zinc-based metal organic frameworks. Main Group Metal Chem. 45(1), 74–85 (2022)

    Article  Google Scholar 

  45. A. Hakeem, A. Ullah, S. Zaman, Computation of some important degree-based topological indices for \(\gamma \)-graphyne and Zigzag graphyne nanoribbon. Mol. Phys. e2211403 (2023)

  46. S. Zaman, M. Jalani, A. Ullah, W. Ahmad, G. Saeedi, Mathematical analysis and molecular descriptors of two novel metal-organic models with chemical applications. Sci. Rep. 13(1), 5314 (2023)

    Article  ADS  Google Scholar 

  47. A. Ullah, S. Zaman, A. Hussain, A. Jabeen, M.B. Belay, Derivation of mathematical closed form expressions for certain irregular topological indices of 2D nanotubes. Sci. Rep. 13(1), 11187 (2023)

    Article  ADS  Google Scholar 

  48. A. Ullah, Z. Bano, S. Zaman, Computational aspects of two important biochemical networks with respect to some novel molecular descriptors. J. Biomol. Struct. Dyn. 1–15 (2023)

  49. S. Zaman, M. Salman, A. Ullah, S. Ahmad, M.S. Abdelgader Abas, Three-dimensional structural modelling and characterization of sodalite material network concerning the irregularity topological indices. J. Math. 2023 (2023)

  50. M. Javaid, A. Sattar, Novel connection based Zagreb indices of dendrimer nanostars. Comput. J. Comb. Math. 3, 23–32 (2022)

    Google Scholar 

  51. A. Sattar, M. Javaid, Topological aspects of metal-organic frameworks: zinc silicate and oxide networks. Comput. Theor. Chem. 1222, 114056 (2023). https://doi.org/10.1016/j.comptc.2023.114056

    Article  Google Scholar 

  52. R. Todeschini, V. Consonni, R. Mannhold, H. Kubinyi, H. Timmerman, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  53. I. Gutman, B. Ruscic, N. Trinajstic, C.F. Wilson, Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62(9), 3399–3405 (1975)

    Article  ADS  Google Scholar 

  54. A.R. Ashrafi, T. Dolic, A. Hamzeh, The Zagreb coindices of graph operations. Discret. Appl. Math. 158(15), 1571–1578 (2010)

    Article  MathSciNet  Google Scholar 

  55. M. Dehmer, K. Varmuza, D. Bonchev, Statistical Modeling of Molecular Descriptors in QSAR/QSPR (Wiley-VCH, Weinheim, 2012)

    Book  Google Scholar 

  56. M.V. Diudea, QSPR/QSAR Studies by Molecular Descriptors (NOVA, New York, 2001)

    Google Scholar 

  57. J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR (CRC Press, Amsterdam, 1999)

    Google Scholar 

  58. I. Gutman, K.C. Das, The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)

    MathSciNet  Google Scholar 

  59. Z. Du, A. Ali, N. Trinajstic, Alkanes with the fist thee maximal/minimal modified fist zageb connection indices. Mol. Inf. 38(4), 1800116 (2019)

    Article  Google Scholar 

  60. A.M. Naji, N.D. Soner, I. Gutman, On leap Zagreb indices of graphs. Commun. Combin. Optim. 2, 99–117 (2017)

Download references

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP-2024.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Shahid Zaman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koam, A.N.A., Ahmad, A., Zaman, S. et al. Fundamental aspects of the molecular topology of fuchsine acid dye with connection numbers. Eur. Phys. J. E 47, 24 (2024). https://doi.org/10.1140/epje/s10189-024-00418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00418-7

Navigation