Skip to main content
Log in

Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M. Muthukumar, Polymer Translocation (CRC Press, 2016)

    Google Scholar 

  2. V.V. Palyulin, T. Ala-Nissila, R. Metzler, Polymer translocation: the first two decades and the recent diversification. Soft Matter. 10(45), 9016–9037 (2014)

    ADS  Google Scholar 

  3. A. Milchev, Single-polymer dynamics under constraints: scaling theory and computer experiment. J. Phys. Condens. Matter. 23(10), 103101 (2011)

    ADS  Google Scholar 

  4. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, et al, The potential and challenges of nanopore sequencing. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 261–268. World Scientific (2010)

  5. M. Wanunu, Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9(2), 125–158 (2012)

    ADS  Google Scholar 

  6. S. Howorka, Z. Siwy, Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38(8), 2360–2384 (2009)

    Google Scholar 

  7. U.F. Keyser, Controlling molecular transport through nanopores. J. R. Soc. Interface 8(63), 1369–1378 (2011)

    Google Scholar 

  8. W. Sung, P. Park, Polymer translocation through a pore in a membrane. Phys. Rev. Lett. 77(4), 783 (1996)

    ADS  Google Scholar 

  9. P.J. Park, W. Sung, Polymer translocation induced by adsorption. J. Chem. Phys. 108(7), 3013–3018 (1998)

    ADS  Google Scholar 

  10. M. Muthukumar, Polymer translocation through a hole. J. Chem. Phys. 111(22), 10371–10374 (1999)

    ADS  Google Scholar 

  11. M. Muthukumar, Polymer escape through a nanopore. J. Chem. Phys. 118(11), 5174–5184 (2003)

    ADS  Google Scholar 

  12. T. Sakaue, Nonequilibrium dynamics of polymer translocation and straightening. Phys. Rev. E 76(2), 021803 (2007)

    ADS  MathSciNet  Google Scholar 

  13. T. Sakaue, Sucking genes into pores: insight into driven translocation. Phys. Rev. E 81(4), 041808 (2010)

    ADS  Google Scholar 

  14. T. Saito, T. Sakaue, Process time distribution of driven polymer transport. Phys. Rev. E 85(6), 061803 (2012)

    ADS  Google Scholar 

  15. J. Sarabadani, T. Ikonen, T. Ala-Nissila, Iso-flux tension propagation theory of driven polymer translocation: the role of initial configurations. J. Chem. Phys. 141(21), 214907 (2014)

    ADS  Google Scholar 

  16. P. Rowghanian, A.Y. Grosberg, Force-driven polymer translocation through a nanopore: an old problem revisited. J. Phys. Chem. B 115(48), 14127–14135 (2011)

    Google Scholar 

  17. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Unifying model of driven polymer translocation. Phys. Rev. E 85(5), 051803 (2012)

    ADS  Google Scholar 

  18. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Influence of pore friction on the universal aspects of driven polymer translocation. EPL (Europhys. Lett.) 103(3), 38001 (2013)

    ADS  Google Scholar 

  19. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Influence of non-universal effects on dynamical scaling in driven polymer translocation. J. Chem. Phys. 137(8), 085101 (2012)

    ADS  Google Scholar 

  20. A. Bhattacharya, K. Binder, Out-of-equilibrium characteristics of a forced translocating chain through a nanopore. Phys. Rev. E 81(4), 041804 (2010)

    ADS  Google Scholar 

  21. A. Bhattacharya, Translocation dynamics of a semiflexible chain under a bias: comparison with tension propagation theory. Polym. Sci. Ser. C 55(1), 60–69 (2013)

    Google Scholar 

  22. H.W. Haan, G.W. Slater, Mapping the variation of the translocation \(\alpha \) scaling exponent with nanopore width. Phys. Rev. E 81(5), 051802 (2010)

    ADS  Google Scholar 

  23. M.G. Gauthier, G.W. Slater, A Monte Carlo algorithm to study polymer translocation through nanopores i theory and numerical approach. J. Chem. Phys. 128(6), 02–612 (2008)

    Google Scholar 

  24. M.G. Gauthier, G.W. Slater, A Monte Carlo algorithm to study polymer translocation through nanopores ii scaling laws. J. Chem. Phys. 128(20), 05–619 (2008)

    Google Scholar 

  25. A. Huang, A. Bhattacharya, K. Binder, Conformations, transverse fluctuations, and crossover dynamics of a semi-flexible chain in two dimensions. J. Chem. Phys. 140(21), 214902 (2014)

    ADS  Google Scholar 

  26. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Influence of polymer-pore interactions on translocation. Phys. Rev. Lett. 99(14), 148102 (2007)

    ADS  Google Scholar 

  27. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Translocation dynamics with attractive nanopore-polymer interactions. Phys. Rev. E 78(6), 061918 (2008)

    ADS  Google Scholar 

  28. J.A. Cohen, A. Chaudhuri, R. Golestanian, Active polymer translocation through flickering pores. Phys. Rev. Lett. 107(23), 238102 (2011)

    ADS  Google Scholar 

  29. J.A. Cohen, A. Chaudhuri, R. Golestanian, Translocation through environments with time dependent mobility. J. Chem. Phys. 137(20), 204911 (2012)

    ADS  Google Scholar 

  30. J. Sarabadani, T. Ala-Nissila, Theory of pore-driven and end-pulled polymer translocation dynamics through a nanopore: an overview. J. Phys. Condens. Matter. 30(27), 274002 (2018)

    Google Scholar 

  31. P.M. Suhonen, R.P. Linna, Dynamics of driven translocation of semiflexible polymers. Phys. Rev. E 97(6), 062413 (2018)

    ADS  Google Scholar 

  32. H.H. Katkar, M. Muthukumar, Role of non-equilibrium conformations on driven polymer translocation. J. Chem. Phys. 148(2), 024903 (2018)

    ADS  Google Scholar 

  33. R. Kumar Sharma, I. Agrawal, L. Dai, P.S. Doyle, S. Garaj, Complex DNA knots detected with a nanopore sensor. Nat. Commun. 10(1), 1–9 (2019)

    ADS  Google Scholar 

  34. A. Suma, C. Micheletti, Pore translocation of knotted DNA rings. Proc. Natl. Acad. Sci. 114(15), 2991–2997 (2017)

    ADS  Google Scholar 

  35. A. Suma, L. Coronel, G. Bussi, C. Micheletti, Directional translocation resistance of zika xrrna. Nat. Commun. 11(1), 1–9 (2020)

    Google Scholar 

  36. C. Plesa, D. Verschueren, S. Pud, J. Van Der Torre, J.W. Ruitenberg, M.J. Witteveen, M.P. Jonsson, A.Y. Grosberg, Y. Rabin, C. Dekker, Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11(12), 1093–1097 (2016)

    ADS  Google Scholar 

  37. D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, C. Bustamante, The bacteriophage \(\varphi \)29 portal motor can package DNA against a large internal force. Nature 413(6857), 748–752 (2001)

    ADS  Google Scholar 

  38. P. Park, W. Sung, A stochastic model of polymer translocation dynamics through biomembranes. Int. J. Bifurc. Chaos 8(05), 927–931 (1998)

    Google Scholar 

  39. G. Sigalov, J. Comer, G. Timp, A. Aksimentiev, Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8(1), 56–63 (2008)

    ADS  Google Scholar 

  40. F. Tessier, G. Slater, Strategies for the separation of polyelectrolytes based on non-linear dynamics and entropic ratchets in a simple microfluidic device. Appl. Phys. A 75, 285–291 (2002)

    ADS  Google Scholar 

  41. N. Pizzolato, A. Fiasconaro, D.P. Adorno, B. Spagnolo, Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field. Phys. Biol. 7(3), 034001 (2010)

    ADS  Google Scholar 

  42. A. Fiasconaro, J.J. Mazo, F. Falo, Translocation time of periodically forced polymer chains. Phys. Rev. E 82(3), 031803 (2010)

    ADS  Google Scholar 

  43. A. Fiasconaro, J.J. Mazo, F. Falo, Translocation of a polymer chain driven by a dichotomous noise. J. Stat. Mech. Theory Exp. 2011(11), 11002 (2011)

    Google Scholar 

  44. J. Sarabadani, T. Ikonen, T. Ala-Nissila, Theory of polymer translocation through a flickering nanopore under an alternating driving force. J. Chem. Phys. 143(7), 074905 (2015)

    ADS  Google Scholar 

  45. T. Ikonen, J. Shin, W. Sung, T. Ala-Nissila, Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions. J. Chem. Phys. 136(20), 05–620 (2012)

    Google Scholar 

  46. G. Upadhyay, R. Kapri, A. Chaudhuri, Gain reversal in the translocation dynamics of a semiflexible polymer through a flickering pore. J. Phys. Condens. Matter. 36(18), 185101 (2024)

    ADS  Google Scholar 

  47. P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Modulating DNA translocation by a controlled deformation of a PDMS nanochannel device. Sci. Rep. 2(1), 791 (2012)

    ADS  Google Scholar 

  48. B. Yameen, M. Ali, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11), 1287–1291 (2009)

    Google Scholar 

  49. H. Katkar, M. Muthukumar, Effect of charge patterns along a solid-state nanopore on polyelectrolyte translocation. J. Chem. Phys. 140(13), 135102 (2014)

    ADS  Google Scholar 

  50. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Heteropolymer translocation through nanopores. J. Chem. Phys. 126(14), 145101 (2007)

    ADS  Google Scholar 

  51. S. Mirigian, Y. Wang, M. Muthukumar, Translocation of a heterogeneous polymer. J. Chem. Phys. 137(6), 064904 (2012)

    ADS  Google Scholar 

  52. J.A. Cohen, A. Chaudhuri, R. Golestanian, Stochastic sensing of polynucleotides using patterned nanopores. Phys. Rev. X 2(2), 021002 (2012)

    Google Scholar 

  53. H.W. Haan, G.W. Slater, Translocation of rod-coil polymers: probing the structure of single molecules within nanopores. Phys. Rev. Lett. 110(4), 048101 (2013)

    ADS  Google Scholar 

  54. R. Kumar, A. Chaudhuri, R. Kapri, Sequencing of semiflexible polymers of varying bending rigidity using patterned pores. J. Chem. Phys. 148(16), 164901 (2018)

    ADS  Google Scholar 

  55. R. Adhikari, A. Bhattacharya, Driven translocation of a semi-flexible chain through a nanopore: a Brownian dynamics simulation study in two dimensions. J. Chem. Phys. 138(20), 204909 (2013)

    ADS  Google Scholar 

  56. E. Stellwagen, Y. Lu, N.C. Stellwagen, Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42(40), 11745–11750 (2003)

    Google Scholar 

  57. M. Lee, B.-K. Cho, W.-C. Zin, Supramolecular structures from rod- coil block copolymers. Chem. Rev. 101(12), 3869–3892 (2001)

    Google Scholar 

  58. C.I. Branden, J. Tooze, Introduction to Protein Structure. Garland Science (2012)

  59. Z. Nie, D. Fava, E. Kumacheva, S. Zou, G.C. Walker, M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6(8), 609–614 (2007)

    Google Scholar 

  60. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  Google Scholar 

  61. J. Sarabadani, T. Ikonen, H. Mökkönen, T. Ala-Nissila, S. Carson, M. Wanunu, Driven translocation of a semi-flexible polymer through a nanopore. Sci. Rep. 7(1), 1–8 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of high performance computing facility at IISER Mohali and PARAM Smriti.

Author information

Authors and Affiliations

Authors

Contributions

AC designed the project. GU and RK developed the numerical code. Data collection and analysis were performed by GU. The first draft of the manuscript was written by AC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhishek Chaudhuri.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, G., Kapri, R. & Chaudhuri, A. Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces. Eur. Phys. J. E 47, 23 (2024). https://doi.org/10.1140/epje/s10189-024-00417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00417-8

Navigation