Skip to main content
Log in

Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M. Muthukumar, Polymer Translocation (CRC Press, 2016)

    Book  Google Scholar 

  2. V.V. Palyulin, T. Ala-Nissila, R. Metzler, Polymer translocation: the first two decades and the recent diversification. Soft Matter. 10(45), 9016–9037 (2014)

    Article  ADS  Google Scholar 

  3. A. Milchev, Single-polymer dynamics under constraints: scaling theory and computer experiment. J. Phys. Condens. Matter. 23(10), 103101 (2011)

    Article  ADS  Google Scholar 

  4. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, et al, The potential and challenges of nanopore sequencing. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 261–268. World Scientific (2010)

  5. M. Wanunu, Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9(2), 125–158 (2012)

    Article  ADS  Google Scholar 

  6. S. Howorka, Z. Siwy, Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38(8), 2360–2384 (2009)

    Article  Google Scholar 

  7. U.F. Keyser, Controlling molecular transport through nanopores. J. R. Soc. Interface 8(63), 1369–1378 (2011)

    Article  Google Scholar 

  8. W. Sung, P. Park, Polymer translocation through a pore in a membrane. Phys. Rev. Lett. 77(4), 783 (1996)

    Article  ADS  Google Scholar 

  9. P.J. Park, W. Sung, Polymer translocation induced by adsorption. J. Chem. Phys. 108(7), 3013–3018 (1998)

    Article  ADS  Google Scholar 

  10. M. Muthukumar, Polymer translocation through a hole. J. Chem. Phys. 111(22), 10371–10374 (1999)

    Article  ADS  Google Scholar 

  11. M. Muthukumar, Polymer escape through a nanopore. J. Chem. Phys. 118(11), 5174–5184 (2003)

    Article  ADS  Google Scholar 

  12. T. Sakaue, Nonequilibrium dynamics of polymer translocation and straightening. Phys. Rev. E 76(2), 021803 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Sakaue, Sucking genes into pores: insight into driven translocation. Phys. Rev. E 81(4), 041808 (2010)

    Article  ADS  Google Scholar 

  14. T. Saito, T. Sakaue, Process time distribution of driven polymer transport. Phys. Rev. E 85(6), 061803 (2012)

    Article  ADS  Google Scholar 

  15. J. Sarabadani, T. Ikonen, T. Ala-Nissila, Iso-flux tension propagation theory of driven polymer translocation: the role of initial configurations. J. Chem. Phys. 141(21), 214907 (2014)

    Article  ADS  Google Scholar 

  16. P. Rowghanian, A.Y. Grosberg, Force-driven polymer translocation through a nanopore: an old problem revisited. J. Phys. Chem. B 115(48), 14127–14135 (2011)

    Article  Google Scholar 

  17. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Unifying model of driven polymer translocation. Phys. Rev. E 85(5), 051803 (2012)

    Article  ADS  Google Scholar 

  18. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Influence of pore friction on the universal aspects of driven polymer translocation. EPL (Europhys. Lett.) 103(3), 38001 (2013)

    Article  ADS  Google Scholar 

  19. T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Influence of non-universal effects on dynamical scaling in driven polymer translocation. J. Chem. Phys. 137(8), 085101 (2012)

    Article  ADS  Google Scholar 

  20. A. Bhattacharya, K. Binder, Out-of-equilibrium characteristics of a forced translocating chain through a nanopore. Phys. Rev. E 81(4), 041804 (2010)

    Article  ADS  Google Scholar 

  21. A. Bhattacharya, Translocation dynamics of a semiflexible chain under a bias: comparison with tension propagation theory. Polym. Sci. Ser. C 55(1), 60–69 (2013)

    Article  Google Scholar 

  22. H.W. Haan, G.W. Slater, Mapping the variation of the translocation \(\alpha \) scaling exponent with nanopore width. Phys. Rev. E 81(5), 051802 (2010)

    Article  ADS  Google Scholar 

  23. M.G. Gauthier, G.W. Slater, A Monte Carlo algorithm to study polymer translocation through nanopores i theory and numerical approach. J. Chem. Phys. 128(6), 02–612 (2008)

    Article  Google Scholar 

  24. M.G. Gauthier, G.W. Slater, A Monte Carlo algorithm to study polymer translocation through nanopores ii scaling laws. J. Chem. Phys. 128(20), 05–619 (2008)

    Article  Google Scholar 

  25. A. Huang, A. Bhattacharya, K. Binder, Conformations, transverse fluctuations, and crossover dynamics of a semi-flexible chain in two dimensions. J. Chem. Phys. 140(21), 214902 (2014)

    Article  ADS  Google Scholar 

  26. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Influence of polymer-pore interactions on translocation. Phys. Rev. Lett. 99(14), 148102 (2007)

    Article  ADS  Google Scholar 

  27. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Translocation dynamics with attractive nanopore-polymer interactions. Phys. Rev. E 78(6), 061918 (2008)

    Article  ADS  Google Scholar 

  28. J.A. Cohen, A. Chaudhuri, R. Golestanian, Active polymer translocation through flickering pores. Phys. Rev. Lett. 107(23), 238102 (2011)

    Article  ADS  Google Scholar 

  29. J.A. Cohen, A. Chaudhuri, R. Golestanian, Translocation through environments with time dependent mobility. J. Chem. Phys. 137(20), 204911 (2012)

    Article  ADS  Google Scholar 

  30. J. Sarabadani, T. Ala-Nissila, Theory of pore-driven and end-pulled polymer translocation dynamics through a nanopore: an overview. J. Phys. Condens. Matter. 30(27), 274002 (2018)

    Article  Google Scholar 

  31. P.M. Suhonen, R.P. Linna, Dynamics of driven translocation of semiflexible polymers. Phys. Rev. E 97(6), 062413 (2018)

    Article  ADS  Google Scholar 

  32. H.H. Katkar, M. Muthukumar, Role of non-equilibrium conformations on driven polymer translocation. J. Chem. Phys. 148(2), 024903 (2018)

    Article  ADS  Google Scholar 

  33. R. Kumar Sharma, I. Agrawal, L. Dai, P.S. Doyle, S. Garaj, Complex DNA knots detected with a nanopore sensor. Nat. Commun. 10(1), 1–9 (2019)

    Article  ADS  Google Scholar 

  34. A. Suma, C. Micheletti, Pore translocation of knotted DNA rings. Proc. Natl. Acad. Sci. 114(15), 2991–2997 (2017)

    Article  ADS  Google Scholar 

  35. A. Suma, L. Coronel, G. Bussi, C. Micheletti, Directional translocation resistance of zika xrrna. Nat. Commun. 11(1), 1–9 (2020)

    Article  Google Scholar 

  36. C. Plesa, D. Verschueren, S. Pud, J. Van Der Torre, J.W. Ruitenberg, M.J. Witteveen, M.P. Jonsson, A.Y. Grosberg, Y. Rabin, C. Dekker, Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11(12), 1093–1097 (2016)

    Article  ADS  Google Scholar 

  37. D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, C. Bustamante, The bacteriophage \(\varphi \)29 portal motor can package DNA against a large internal force. Nature 413(6857), 748–752 (2001)

    Article  ADS  Google Scholar 

  38. P. Park, W. Sung, A stochastic model of polymer translocation dynamics through biomembranes. Int. J. Bifurc. Chaos 8(05), 927–931 (1998)

    Article  Google Scholar 

  39. G. Sigalov, J. Comer, G. Timp, A. Aksimentiev, Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8(1), 56–63 (2008)

    Article  ADS  Google Scholar 

  40. F. Tessier, G. Slater, Strategies for the separation of polyelectrolytes based on non-linear dynamics and entropic ratchets in a simple microfluidic device. Appl. Phys. A 75, 285–291 (2002)

    Article  ADS  Google Scholar 

  41. N. Pizzolato, A. Fiasconaro, D.P. Adorno, B. Spagnolo, Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field. Phys. Biol. 7(3), 034001 (2010)

    Article  ADS  Google Scholar 

  42. A. Fiasconaro, J.J. Mazo, F. Falo, Translocation time of periodically forced polymer chains. Phys. Rev. E 82(3), 031803 (2010)

    Article  ADS  Google Scholar 

  43. A. Fiasconaro, J.J. Mazo, F. Falo, Translocation of a polymer chain driven by a dichotomous noise. J. Stat. Mech. Theory Exp. 2011(11), 11002 (2011)

    Article  Google Scholar 

  44. J. Sarabadani, T. Ikonen, T. Ala-Nissila, Theory of polymer translocation through a flickering nanopore under an alternating driving force. J. Chem. Phys. 143(7), 074905 (2015)

    Article  ADS  Google Scholar 

  45. T. Ikonen, J. Shin, W. Sung, T. Ala-Nissila, Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions. J. Chem. Phys. 136(20), 05–620 (2012)

    Article  Google Scholar 

  46. G. Upadhyay, R. Kapri, A. Chaudhuri, Gain reversal in the translocation dynamics of a semiflexible polymer through a flickering pore. J. Phys. Condens. Matter. 36(18), 185101 (2024)

    Article  ADS  Google Scholar 

  47. P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Modulating DNA translocation by a controlled deformation of a PDMS nanochannel device. Sci. Rep. 2(1), 791 (2012)

    Article  ADS  Google Scholar 

  48. B. Yameen, M. Ali, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11), 1287–1291 (2009)

    Article  Google Scholar 

  49. H. Katkar, M. Muthukumar, Effect of charge patterns along a solid-state nanopore on polyelectrolyte translocation. J. Chem. Phys. 140(13), 135102 (2014)

    Article  ADS  Google Scholar 

  50. K. Luo, T. Ala-Nissila, S.-C. Ying, A. Bhattacharya, Heteropolymer translocation through nanopores. J. Chem. Phys. 126(14), 145101 (2007)

    Article  ADS  Google Scholar 

  51. S. Mirigian, Y. Wang, M. Muthukumar, Translocation of a heterogeneous polymer. J. Chem. Phys. 137(6), 064904 (2012)

    Article  ADS  Google Scholar 

  52. J.A. Cohen, A. Chaudhuri, R. Golestanian, Stochastic sensing of polynucleotides using patterned nanopores. Phys. Rev. X 2(2), 021002 (2012)

    Google Scholar 

  53. H.W. Haan, G.W. Slater, Translocation of rod-coil polymers: probing the structure of single molecules within nanopores. Phys. Rev. Lett. 110(4), 048101 (2013)

    Article  ADS  Google Scholar 

  54. R. Kumar, A. Chaudhuri, R. Kapri, Sequencing of semiflexible polymers of varying bending rigidity using patterned pores. J. Chem. Phys. 148(16), 164901 (2018)

    Article  ADS  Google Scholar 

  55. R. Adhikari, A. Bhattacharya, Driven translocation of a semi-flexible chain through a nanopore: a Brownian dynamics simulation study in two dimensions. J. Chem. Phys. 138(20), 204909 (2013)

    Article  ADS  Google Scholar 

  56. E. Stellwagen, Y. Lu, N.C. Stellwagen, Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42(40), 11745–11750 (2003)

    Article  Google Scholar 

  57. M. Lee, B.-K. Cho, W.-C. Zin, Supramolecular structures from rod- coil block copolymers. Chem. Rev. 101(12), 3869–3892 (2001)

    Article  Google Scholar 

  58. C.I. Branden, J. Tooze, Introduction to Protein Structure. Garland Science (2012)

  59. Z. Nie, D. Fava, E. Kumacheva, S. Zou, G.C. Walker, M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6(8), 609–614 (2007)

    Article  Google Scholar 

  60. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  Google Scholar 

  61. J. Sarabadani, T. Ikonen, H. Mökkönen, T. Ala-Nissila, S. Carson, M. Wanunu, Driven translocation of a semi-flexible polymer through a nanopore. Sci. Rep. 7(1), 1–8 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of high performance computing facility at IISER Mohali and PARAM Smriti.

Author information

Authors and Affiliations

Authors

Contributions

AC designed the project. GU and RK developed the numerical code. Data collection and analysis were performed by GU. The first draft of the manuscript was written by AC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhishek Chaudhuri.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, G., Kapri, R. & Chaudhuri, A. Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces. Eur. Phys. J. E 47, 23 (2024). https://doi.org/10.1140/epje/s10189-024-00417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00417-8

Navigation