Skip to main content
Log in

Viscosimetric squeeze flow of suspensions

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The rheology of particle suspensions has been extensively explored in the case of a simple shear flow, but less in other flow configurations which are also important in practice. Here we investigate the behavior of a suspension in a squeeze flow, which we revisit using local pressure measurements to deduce the effective viscosity. The flow is generated by approaching a moving disk to a fixed wall at constant velocity in the low Reynolds number limit. We measure the evolution of the pressure field at the wall and deduce the effective viscosity from the radial pressure drop. After validation of our device using a Newtonian fluid, we measure the effective viscosity of a suspension for different squeezing speeds and volume fractions of particles. We find results in agreement with the Maron–Pierce law, an empirical expression for the viscosity of suspensions that was established for simple shear flows. We prove that this method to determine viscosity remains valid in the limit of large gap width. This makes it possible to study the rheology of suspensions within this limit and therefore suspensions composed of large particles, in contrast to Couette flow cells which require small gaps.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Coussot, Mudflow rheology and dynamics (Routledge, New York, 2017)

    Book  Google Scholar 

  2. N. Roussel, Understanding the rheology of concrete (Elsevier, Amsterdam, 2011)

    Google Scholar 

  3. E. Blanco, D.J. Hodgson, M. Hermes, R. Besseling, G.L. Hunter, P.M. Chaikin, M.E. Cates, I. Van Damme, W.C. Poon, Proc. Natl. Acad. Sci. 116(21), 10303 (2019)

    Article  ADS  Google Scholar 

  4. É. Guazzelli, O. Pouliquen, J. Fluid Mech. 852 (2018)

  5. A. Einstein et al., Ann. Phys. 17(549–560), 208 (1905)

    Google Scholar 

  6. G. Batchelor, J. Fluid Mech. 52(2), 245 (1972)

    Article  ADS  Google Scholar 

  7. J.J. Stickel, R.L. Powell, Annu. Rev. Fluid Mech. 37, 129 (2005)

    Article  ADS  Google Scholar 

  8. P. Mills, P. Snabre, Eur. Phys. J. E 30(3), 309 (2009)

    Article  Google Scholar 

  9. P. Hébraud, Rheol. Acta 48(8), 845 (2009)

    Article  Google Scholar 

  10. A.C.K. Sato, R.L. Cunha, J. Food Eng. 91(4), 566 (2009)

    Article  Google Scholar 

  11. S. Olhero, J. Ferreira, Powder Technol. 139(1), 69 (2004)

    Article  Google Scholar 

  12. C. Gamonpilas, J.F. Morris, M.M. Denn, J. Rheol. 60(2), 289 (2016)

    Article  ADS  Google Scholar 

  13. S. Pednekar, J. Chun, J.F. Morris, J. Rheol. 62(2), 513 (2018)

    Article  ADS  Google Scholar 

  14. R. Mari, R. Seto, J.F. Morris, M.M. Denn, J. Rheol. 58(6), 1693 (2014)

    Article  ADS  Google Scholar 

  15. F. Peters, G. Ghigliotti, S. Gallier, F. Blanc, E. Lemaire, L. Lobry, J. Rheol. 60(4), 715 (2016)

    Article  ADS  Google Scholar 

  16. L. Lobry, E. Lemaire, F. Blanc, S. Gallier, F. Peters, J. Fluid Mech. 860, 682 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Mari, R. Seto, J.F. Morris, M.M. Denn, J. Rheol. 58(6), 1693 (2014)

    Article  ADS  Google Scholar 

  18. A. Rashedi, M. Sarabian, M. Firouznia, D. Roberts, G. Ovarlez, S. Hormozi, AIChE J. 66(12), e17100 (2020)

    Article  ADS  Google Scholar 

  19. R. Seto, G.G. Giusteri, J. Fluid Mech. 857, 200 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. É. Couturier, F. Boyer, O. Pouliquen, É. Guazzelli, J. Fluid Mech. 686, 26 (2011)

    Article  ADS  Google Scholar 

  21. T. Dbouk, L. Lobry, E. Lemaire, J. Fluid Mech. 715, 239 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Garland, G. Gauthier, J. Martin, J. Morris, J. Rheol. 57(1), 71 (2013)

    Article  ADS  Google Scholar 

  23. A. Singh, C. Ness, R. Seto, J.J. de Pablo, H.M. Jaeger, Phys. Rev. Lett. 124(24), 248005 (2020)

  24. J. Engmann, C. Servais, A.S. Burbidge, J. Nonnewton. Fluid Mech. 132(1–3), 1 (2005)

    Article  Google Scholar 

  25. J. Château, É. Guazzelli, H. Lhuissier, J. Fluid Mech. 852, 178 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. E.C. McIntyre, F.E. Filisko, Appl. Rheol. 19(4), 44322 (2009)

    Google Scholar 

  27. N. Delhaye, A. Poitou, M. Chaouche, J. Nonnewton. Fluid Mech. 94(1), 67 (2000)

    Article  Google Scholar 

  28. J. Collomb, F. Chaari, M. Chaouche, J. Rheol. 48(2), 405 (2004)

    Article  ADS  Google Scholar 

  29. M. Nikkhoo, K. Khodabandehlou, L. Brozovsky, F. Gadala-Maria, Rheol. Acta 52(2), 155 (2013)

    Article  Google Scholar 

  30. W. Wolfe, Appl. Sci. Res. Sect. A 14(1), 77 (1965)

  31. D.C. Kuzma, Appl. Sci. Res. 18(1), 15 (1968)

    Article  Google Scholar 

  32. R. Grimm, Appl. Sci. Res. 32(2), 149 (1976)

    Article  ADS  Google Scholar 

  33. Q. Ghori, M. Ahmed, A. Siddiqui, Int. J. Nonlinear Sci. Numer. Simul. 8(2), 179 (2007)

    Article  Google Scholar 

  34. G.G. Giusteri, R. Seto, J. Rheol. 62(3), 713 (2018)

    Article  ADS  Google Scholar 

  35. J.F. Morris, F. Boulay, J. Rheol. 43(5), 1213 (1999)

    Article  ADS  Google Scholar 

  36. P.C. Carman, Discuss. Faraday Soc. 3, 72 (1948)

    Article  Google Scholar 

  37. E. Guyon, J.P. Hulin, L. Petit, C.D. Mitescu, Physical hydrodynamics (Oxford University Press, Oxford, 2015)

    Book  Google Scholar 

  38. I.E. Zarraga, D.A. Hill, D.T. Leighton Jr., J. Rheol. 44(2), 185 (2000)

    Article  ADS  Google Scholar 

  39. S. Chatraei, C.W. Macosko, H. Winter, J. Rheol. 25(4), 433 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Amarni, A. Aubertin, L. Auffray, C. Manquest and R. Pidoux for their contribution to the development of the experimental setup. This work has been supported by “Investissements d’Avenir” LabEx PALM (Grant No. ANR-10-LABX-0039-PALM). We thank Anne Mongruel and Anniina Salonen for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seguin.

Ethics declarations

Declarations

The authors have no relevant financial or nonfinancial interests to disclose. The authors contributed equally to the work. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidi, K., Texier, B.D., Gauthier, G. et al. Viscosimetric squeeze flow of suspensions. Eur. Phys. J. E 47, 17 (2024). https://doi.org/10.1140/epje/s10189-024-00410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00410-1

Navigation