Skip to main content
Log in

Drying behaviour of nanofluid sessile droplets on self-affine vis-à-vis corrugated nanorough surfaces

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In recent years, evaporative self-assembly of sessile droplets has gained considerable attention owing to its wide applicability in many areas. While the phenomenon is well studied for smooth and isotropically rough (self-affine) surfaces, investigations comparing the outcomes on self-affine vis-à-vis corrugated surfaces remains to be done. In this experimental work, we compare the wetting and evaporation dynamics of nano-colloidal microlitre droplets on self-affine and corrugated nanorough surfaces having identical roughnesses and interface properties. The coupled influence of particle size, concentration, and surface structuring has been explored. Differences in wettability and evaporation dynamics are observed, which are explained via the interaction between wetting fluid and anisotropic surface roughness. Our findings exhibit different temporal behaviour of contact radius and angle in the evaporation process of the droplets. Further, the corrugated surface exhibits anisotropic wettability with a monotonic change in droplet shape as evaporation proceeds, finally giving rise to irregular dried patterns. The scaled rim width and crack spacing of the particulate deposits are examined. Our results can inspire fabrication of surfaces that can facilitate direction-dependent droplet motion for specific applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Young, Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    ADS  Google Scholar 

  2. R.D. Deegan, Phys. Rev. E - Stat. Phys. Plasmas Fluids Related Interdiscip. Topics 61, 475–485 (2000)

    Google Scholar 

  3. P. Calvert, Chem. Mater. 13, 3299–3305 (2001)

    Google Scholar 

  4. T.-S.S. Wong, T.-H.H. Chen, X. Shen, C.-M.M. Ho, Anal. Chem. 83, 1871–1873 (2011)

    Google Scholar 

  5. W. Han, B. Li, Z. Lin, ACS Nano 7, 6079–6085 (2013)

    Google Scholar 

  6. J.T. Wen, C.-M. Ho, P.B. Lillehoj, Langmuir 29, 8440–8446 (2013)

    Google Scholar 

  7. W. Zhou, A. Hu, S. Bai, Y. Ma, Q. Su, Nanoscale Res. Lett. 9, 1–9 (2014)

    ADS  Google Scholar 

  8. H. Hu, R.G. Larson, J. Phys. Chem. B 106, 1334–1344 (2002)

    Google Scholar 

  9. H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090–7094 (2006)

    Google Scholar 

  10. R. Gimenez, G.J. Soler-Illia, C.L.A. Berli, M.G. Bellino, ACS Nano 14, 2702–2708 (2020)

    Google Scholar 

  11. H.P. Jansen, K. Sotthewes, J. van Swigchem, H.J.W. Zandvliet, E.S. Kooij, Phys. Rev. E 88, 13008 (2013)

    ADS  Google Scholar 

  12. X. Dai, N. Sun, S.O. Nielsen, B.B. Stogin, J. Wang, S. Yang, T.S. Wong, Sci. Adv. 4 (2018)

  13. D. Zang, S. Tarafdar, Y.Y. Tarasevich, M.D. Choudhury, T. Dutta, Phys. Rep. 804, 1–56 (2019)

    ADS  MathSciNet  Google Scholar 

  14. H.-J. Butt, G. Karlheinz, M. Lappl, Contact Angle Phenomena and Wetting; pp. 118–144 (2003)

  15. D. Kim, N.M. Pugno, S. Ryu, Sci. Rep. 6, 37813 (2016)

    ADS  Google Scholar 

  16. A.-L. Barabási, H. E. Stanley, Fractal Concepts in Surface Growth. Cambridge University Press (1995)

  17. P.K. Dhillon, S. Sarkar, Appl. Surf. Sci. 284, 569–574 (2013)

    ADS  Google Scholar 

  18. M. Hosseini, A. Rodriguez, W.A. Ducker, J. Colloid Interface Sci. 633, 132–141 (2023)

    Google Scholar 

  19. W. Xu, C.H. Choi, J. Heat Transf. 134, 051022 (2012)

    Google Scholar 

  20. D. Lohani, S. Sarkar, Langmuir 34, 12751–12758 (2018)

    Google Scholar 

  21. C. Seyfert, E.J. Berenschot, N.R. Tas, A. Susarrey-Arce, A. Marin, Soft Matter 17, 506–515 (2021)

    ADS  Google Scholar 

  22. G.G. Wells, É. Ruiz-Gutiérrez, Y. L. Lirzin, A. Nourry, B.V. Orme, M. Pradas, R. Ledesma-Aguilar, Nat. Commun. 9, 1–7 (2018)

  23. J. Zhang, F. Müller-Plathe, F. Leroy, Langmuir 31, 7544–7552 (2015)

    Google Scholar 

  24. X. Chen, R. Ma, J. Li, C. Hao, W. Guo, B.L. Luk, S.C. Li, S. Yao, Z. Wang, Phys. Rev. Lett. 109, 1–6 (2012)

    Google Scholar 

  25. V. Garg, L. Qiao, P. Sarwate, C. Luo, Langmuir 30, 14469–14475 (2014)

    Google Scholar 

  26. B. Hou, C. Wu, X. Li, J. Huang, M. Chen, Appl. Surf. Sci. 542, 148611 (2021)

    Google Scholar 

  27. D. Xia, L.M. Johnson, G.P. Lõpez, Adv. Mater. 24, 1287–1302 (2012)

    Google Scholar 

  28. F. Zhang, H.Y. Low, Langmuir 23, 7793–7798 (2007)

    Google Scholar 

  29. A.D. Sommers, A.M. Jacobi, J. Micromech. Microeng. 16, 1571–1578, Intro application oriented (2006)

  30. D. Xia, S.R. Brueck, Nano Lett. 8, 2819–2824 (2008)

    ADS  Google Scholar 

  31. O. Bliznyuk, E. Vereshchagina, E.S. Kooij, B. Poelsema, Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 79 (2009)

  32. Y. Zhao, Q. Lu, M. Li, X. Li, Langmuir 23, 6212–6217 (2007)

  33. S.G. Lee, H.S. Lim, D.Y. Lee, D. Kwak, K. Cho, Adv. Funct. Mater. 23, 547–553 (2013)

    Google Scholar 

  34. H. Robbins, B. Schwartz, J. Jpn. Soc. Precis. Eng. 51, 1013–1018 (1960)

    Google Scholar 

  35. J. Muñoz-García, L. Vázquez, M. Castro, R. Gago, A. Redondo-Cubero, A. Moreno- Barrado, R. Cuerno, Mater. Sci. Eng. R. Rep. 86, 1–44 (2014)

    Google Scholar 

  36. Rakhi, S. Sarkar, Phys. Rev. B 106, 245420 (2022)

  37. R.M. Bradley, J.M.E.J. Harper, Vac. Sci. Technol. A 6, 2390–2395 (1988)

    Google Scholar 

  38. W.L. Chan, E. Chason, J. Appl. Phys. 101, 1 (2007)

    Google Scholar 

  39. T. Pham, S. Kumar, Langmuir 33, 10061–10076 (2017)

    Google Scholar 

  40. Y. Chen, B. He, J. Lee, N.A. Patankar, J. Colloid Interface Sci. 281, 458–464 (2005)

    ADS  Google Scholar 

  41. Scientific, K. ADVANCE-software @ www.kruss-scientific.com. https://www.kruss-scientific.com/en/products-services/advance-software#

  42. C.Q. LaMarche, S. Leadley, P. Liu, K.M. Kellogg, C.M. Hrenya, Chem. Eng. Sci. 158, 140–153 (2017)

    Google Scholar 

  43. M. Radiom, C. Yang, W.K. Chan, Nanoscale Res. Lett. 8, 1–9 (2013)

    ADS  Google Scholar 

  44. W. Xu, C.-H. Choi, Phys. Rev. Lett. 109, 24504 (2012)

    ADS  Google Scholar 

  45. B.M. Weon, J.H. Je, Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.Physical Review E - Statistical, Nonlinear, and Soft MatterPhysics 82, 1–4 (2010)

    Google Scholar 

  46. R. Raj, S. Adera, R. Enright, E.N. Wang, Nat. Commun. 5, 4975 (2014)

    ADS  Google Scholar 

  47. Y.O. Popov, Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.Physical Review E - Statistical, Nonlinear, and Soft MatterPhysics 71, 1–17 (2005)

    Google Scholar 

  48. F. Giorgiutti-Dauphiné, L. Pauchard, Soft Matter 11, 1397–1402 (2015)

    ADS  Google Scholar 

  49. K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J.C. Weaver, J. Aizenberg, Nature 531, 78–82 (2016)

    ADS  Google Scholar 

  50. M. Pradas, N. Savva, J.B. Benziger, I.G. Kevrekidis, S. Kalliadasis, Langmuir 32, 4736–4745 (2016)

    Google Scholar 

  51. D. Herde, U. Thiele, S. Herminghaus, M. Brinkmann, EPL (Europhysics Letters) 100, 16002 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB India (Grant No. CRG/2018/001258) for partial financial support related to this work. We also thank the Central Research Facility, IIT Ropar for AFM, FESEM and XPS measurements. Deeksha Rani also would like to thank the University Grants Commission (UGC), Government of India, for financial support through a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhendu Sarkar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2755 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, D., Sarkar, S. Drying behaviour of nanofluid sessile droplets on self-affine vis-à-vis corrugated nanorough surfaces. Eur. Phys. J. E 46, 113 (2023). https://doi.org/10.1140/epje/s10189-023-00374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00374-8

Navigation