Skip to main content
Log in

Foam drainage equation in fractal dimensions: breaking and instabilities

  • Tips and Tricks -- Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of a phenomenological model for drainage of a liquid in foam in fractal dimensions. Our model is based on the concepts of “product-like fractal measure” introduced to model dynamics in porous media and “complex fractional transform” which converts a fractal space on a small scale to a smooth space with a large scale. The solution of the fractal foam drainage equation has been approximated using the He’s homotopy perturbation method. Qualitative analysis shows that the behavior of the solitonic wave in fractal dimensions differ from the behavior in integer dimensions. This deformation generates instabilities in the foam dynamics, dispersion and spontaneous breaking of the solitonic wave.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm the absence of sharing data.

References

  1. C. Ensarioglu, C. Bakirci, H. Koluk, M.C. Cakir, Metal foams and their applications in aerospace components, in Materials, Structures and Manufacturing for Aircraft. Sustainable Aviation. ed. by M.C. Kushan, S. Gurgen, M.A. Sofuoglu (Springer, Cham, 2022). https://doi.org/10.1007/978-3-030-91873-6_2

    Chapter  Google Scholar 

  2. C. Koerner, Integral Foam Modeling of Light Metals: Technology, Foam Physics and Foam Simulation (Springer, Cham, 2008)

    Google Scholar 

  3. E.S. Weiser, T.F. Johnson, T.L. St Clair, Y. Echigo, H. Kaneshiro, B.W. Grimsley, Polyimide foams for aerospace vehicles. High Perform. Polym. 12, 1–12 (2000)

    Google Scholar 

  4. M. Emami, M.R. Thompson, J. Viachopoulos, Experimental and numerical studies on bubble dynamics in nonpressurized foaming systems. Polymer. Eng. Sci. 54, 1947–1959 (2014)

    Google Scholar 

  5. M. Mahmoudi, A.H. Behravesh, S.A. Mohammad Rezawand, A. Pashaei, Visualization of bubble dynamics in foam injection molding. J. Appl. Polym. Sci. 116, 3346–3355 (2010)

    Google Scholar 

  6. P. Wang, P.R. Brito-Parada, Dynamics of a particle-laden bubble colliding with an air-liquid interface. Chem. Eng. J. 429, 132427 (2022)

    Google Scholar 

  7. H. Leuner, C. Gerstenberg, K. Lechner, C. McHardy, C. Rauh, J.-U. Repke, Overcoming unwanted foam in industrial processes of the chemical and food industry-an ongoing survey. Chem. Eng. Res. Des. 163, 281–294 (2020)

    Google Scholar 

  8. P. Walstra, Principles of foam formation and stability, in Foams: Physics, Chemistry and Structure. Springer Series in Applied Biology. ed. by A. Wilson (Springer, London, 1989). https://doi.org/10.1007/978-1-4471-3807-5_1

    Chapter  Google Scholar 

  9. M. Safouane, A. Saint-Jalmes, V. Bergeron, D. Langevin, Viscosity effects in foam drainage: Newtonian and non-Newtonian foaming fluids. Eur. Phys. J. E 19, 195–202 (2006)

    Google Scholar 

  10. Ch. Vial, I. Narchi, Development of a model foamy viscous fluid. Oil Gas Sci. Technol. 69, 481–497 (2014)

    Google Scholar 

  11. P.S. Stewart, S. Hilgenfeldt, Gas-liquid foam dynamics: from structural elements to continuum descriptions. Ann. Rev. Fluid Mech. 55, 323–350 (2023)

    ADS  Google Scholar 

  12. K. Gladbach, A. Delgado, C. Rauh, Numerical simulation of foaming processes. World J. Mech. 07, 297–322 (2017)

    ADS  Google Scholar 

  13. I.B. Bazhlekov, Numerical method for 3D simulations of foam dynamics in the presence of surfactant. AIP Conf. Proc. 1404, 373–380 (2011)

    ADS  Google Scholar 

  14. I.E. Ireka, D. Niedziela, K. Schafer, J. Troltzsch, K. Steiner, F. Helbig, T. Chinyoka, L. Kroll, Computational modelling of the complex dynamics of chemically blown polyurethane foam. Phys. Fluids 27, 113102 (2015)

    ADS  MATH  Google Scholar 

  15. A. Fereidoon, H. Yaghoobi, M. Davoudabadi, Application of the homotopy perturbation method for solving the foam drainage equation. Int. J. Diff. Equ. 2011, 864023 (2011)

    MathSciNet  MATH  Google Scholar 

  16. E. Barlow, A.M. Bradley, A.J. Mulholland, C. Torres-Sanchez, A weak-inertia mathematical model of bubble growth in a polymer foam. J. Non-Newton. Fluid Mech. 244, 1–14 (2017)

    MathSciNet  Google Scholar 

  17. M.N. Allam, Exact solutions to the foam drainage equation by using the new generalized G’/G-expansion method. Res. Phys. 5, 168–177 (2017)

    ADS  Google Scholar 

  18. M.L. Wang, X.Z. Li, Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 343, 48–54 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  19. V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons (Springer, Berlin, 1991)

    MATH  Google Scholar 

  20. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitary wave solutions for nonlinear Hirota–Sasuma coupled KDV equations. Chaos Solitons Fractals 22, 285–303 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  21. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  22. K.B. Oldham, J. Spanier, The Fractional Calculus: Integrations and Differentiations of Arbitrary Order (Academic Press, New York, 1974)

    MATH  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, New York, 1999)

    MATH  Google Scholar 

  24. M. Singh, M. Nassem, A. Kumar, S. Kumar, Homotopy analysis transform algorithm to solve time-fractional foam drainage equation. Nonlinear Eng. 5, 161–166 (2016)

    ADS  Google Scholar 

  25. D. Shi, Y. Zhang, W. Liu, Multiple exact solutions of the generalized time fractional foam drainage equation. Fractals 28, 2050062 (2020)

    ADS  MATH  Google Scholar 

  26. V.K. Srivastava, M.K. Awasthi, S. Kumar, Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method. Egypt. J. Basic Appl. Sci. 1, 60–66 (2014)

    Google Scholar 

  27. A. Yildirim, H. Kocak, Rational approximation solution of the foam drainage equation with time- and space-fractional derivatives. Int. J. Numer. Methods Heat Fluid Flow 22, 515–525 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Q.M. Al-Mdallal, H. Yusuf, A. Ali, A novel algorithm foe time-fractional foam drainage equation. Alex. Eng. J. 59, 1607–1612 (2020)

    Google Scholar 

  29. B.B. Mandelbrot, Y. Wang, W. Ding, S. Xu, Y. Zhang, B. Li et al., The Fractal Geometry of Nature (W. H. Freeman, New York, 1982)

    Google Scholar 

  30. B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Company, New York, 1983)

    Google Scholar 

  31. K.J. Falconer, Fractal Geometry-Mathematical Foundations and Applications (Wiley, New York, 2003)

    MATH  Google Scholar 

  32. J. Feder, Fractals (Physics of Solids and Liquids), 1988th edn. (Springer, Cham, 1988)

    Google Scholar 

  33. J.F. Gouyet, B.B. Mandelbrot, Physics and Fractal Structures, 1st edn. (Springer, Cham, 1996)

    Google Scholar 

  34. K.-L. Wang, A study of the fractal foam drainage model in a microgravity space. Math. Methods Appl. Sci. 44, 10530–10540 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  35. S. Habib, A. Islam, A. Batool, M.U. Sohail, M. Nadeem, Numerical solutions of the fractal foam drainage equation. GEM-Int. J. Geomath. 12, 7 (2021)

    MathSciNet  MATH  Google Scholar 

  36. J.-H. He, Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

    ADS  Google Scholar 

  37. J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A465, 2521 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  38. J. Li, M. Ostoja-Starzewski, Thermo-poromechanics of fractal media. Philos. Trans. Roy. Soc. A378, 20190288 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  39. R.A. El-Nabulsi, Quantum dynamics in low-dimensional systems with position-dependent mass and product-like fractal geometry. Phys. E Low-Dimens. Syst. Nanostruct. 134, 114827 (2021)

    Google Scholar 

  40. R.A. El-Nabulsi, Superconductivity and nucleation from fractal anisotropy and product-like fractal measure. Proc. R. Soc. A477, 20210065 (2021)

    ADS  MathSciNet  Google Scholar 

  41. R.A. El-Nabulsi, W. Anukool, Modeling of combustion and turbulent jet diffusion flames in fractal dimensions. Contin. Mech. Therm. 34, 1219–1235 (2022)

    MathSciNet  MATH  Google Scholar 

  42. R.A. El-Nabulsi, W. Anukool, Grad–Shafranov equation in fractal dimensions. Fusion Sci. Technol. 78, 449–467 (2022)

    ADS  Google Scholar 

  43. R.A. El-Nabulsi, W. Anukool, Fractal dimension modeling of seismology and earthquakes dynamics. Acta Mech. 233, 2107–2122 (2022)

    MathSciNet  MATH  Google Scholar 

  44. R.A. El-Nabulsi, W. Anukool, Fractal MHD wind in the solar atmosphere. Adv. Sp. Res. 69, 3525–3539 (2022)

    ADS  Google Scholar 

  45. R.A. El-Nabulsi, W. Anukool, Ocean-atmosphere dynamics and Rossby waves in fractal anisotropic media. Meteorol. Atmos. Phys. 134, 33 (2020)

    ADS  Google Scholar 

  46. R.A. El-Nabulsi, W. Anukool, Fractal dimensions in fluid dynamics and their effects on the Rayleigh problem, the Burger’s vortex and the Kelvin–Helmholtz instability. Acta Mech. 233, 363–381 (2022)

    MathSciNet  MATH  Google Scholar 

  47. R.A. El-Nabulsi, W. Anukool, Nonlocal fractal neutrons transport equation and its implications in nuclear engineering. Act Mech. 233, 4083–4100 (2022)

    MathSciNet  MATH  Google Scholar 

  48. R.A. El-Nabulsi, Fractal Pennes and Cattaneo–Vernotte bioheat equations from product-like fractal geometry and their implications on cells in the presence of tumor growth. J. R. Soc. Interface. 18, 202110564 (2021)

    Google Scholar 

  49. R.A. El-Nabulsi, W. Anukool, Quantum dots and cuboid quantum wells in fractal dimensions with position-dependent masses. Appl. Phys. A Mater. Sci. Process. 127, 856 (2021)

    ADS  Google Scholar 

  50. R.A. El-Nabulsi, W. Anukool, A mapping from Schrodinger equation to Navier–Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity. Acta Mech. 232, 5031–5039 (2021)

    MathSciNet  MATH  Google Scholar 

  51. R.A. El-Nabulsi, Position-dependent mass fractal Schrodinger equation from fractal anisotropy and product-like fractal measure and its implications in quantum dots and nanocrystals. Opt. Quantum Electron. 53, 503 (2021)

    Google Scholar 

  52. R.A. El-Nabulsi, Quantization of Foster mesoscopic circuit and DC-pumped Josephson parametric amplifier from fractal measure arguments. Phys. E Low-Dimens. Syst. Nanostruct. 133, 114845 (2021)

    Google Scholar 

  53. R.A. El-Nabulsi, Fractal neutrons diffusion equation: uniformization of heat and fuel burn-up in nuclear reactor. Nuclear Eng. Des. 380, 111312 (2021)

    Google Scholar 

  54. R.A. El-Nabulsi, Thermal transport equations in porous media from product-like fractal measure. J. Therm. Stress. 44, 899–912 (2021)

    Google Scholar 

  55. R.A. El-Nabulsi, On nonlocal fractal laminar steady and unsteady flows. Acta Mech. 232, 1413–1424 (2021)

    MathSciNet  MATH  Google Scholar 

  56. R.A. El-Nabulsi, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A 476, 20190729 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  57. A. Deppman, E. Megias, R. Pasechnik, Fractal derivatives, fractional derivatives and q-deformed calculus. Entropy 25(7), 1008 (2023)

    ADS  MathSciNet  Google Scholar 

  58. J.H. He, A tutorial review on fractal space and fractional calculus. Int. J. Theor. Phys. 53, 3698–3718 (2014)

    MATH  Google Scholar 

  59. A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  60. R.A. El-Nabulsi, W. Anukool, On fractal thermodynamics of the superconducting transition and the roles of specific heat, entropy and critical magnetic field in disordered superconductors. Phys. C Supercond. Appl. 611, 1354302 (2023)

    ADS  Google Scholar 

  61. A.K. Golmankhaneh, Fractal Calculus and its Applications: F-Alpha Calculus (World Scientific, Singapore, 2023)

    MATH  Google Scholar 

  62. R.A. El-Nabulsi, W. Anukool, Modeling thermal diffusion flames with fractal dimensions. Therm. Sci. Eng. Prog. 45, 102145 (2023)

    Google Scholar 

  63. J.-H. He, Z.-B. Li, O.-L. Wang, An new fractional derivative and its application to explanation of polar bear hairs. J. King Saud Univ. Sci. 28, 190–192 (2016)

    Google Scholar 

  64. J.-H. He, A new fractal derivation. Therm. Sci. 15, 145–147 (2011)

    Google Scholar 

  65. A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Solitons Fractals 136, 109860 (2020)

    MathSciNet  Google Scholar 

  66. K. Hattaf, A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels. Fractal Fract. 7(5), 395 (2023)

    Google Scholar 

  67. W. Cai, W. Chen, F. Wang, Three-dimensional Hausdorff derivative diffusion model for isotropic/anisotropic fractal porous media. Therm. Sci. 22, 1–6 (2018)

    Google Scholar 

  68. Y. Liang, W. Chen, W. Cai, Hausdorff Calculus: Applications to Fractal Systems, vol. 6 (Walter de Gruyter GmbH & Co. KG, Berlin, 2019). https://doi.org/10.1515/9783110608526

    Book  MATH  Google Scholar 

  69. R.A. El-Nabulsi, Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few-Body Syst. 61, 10 (2020)

    ADS  Google Scholar 

  70. R.A. El-Nabulsi, Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic carrier concentrations. J. Phys. Chem. Solids 127, 224–230 (2019)

    ADS  Google Scholar 

  71. R.A. El-Nabulsi, Geostrophic flow and wind-driven ocean currents depending on the spatial dimensionality of the medium. Pure Appl. Geophys. 176, 2739–2750 (2019)

    ADS  Google Scholar 

  72. Q. Tan, Y. Kang, L. You, C. Xu, Characterization on temporal evolution of porosity, permeability, and reactive specific surface based on fractal model during mineral dissolution. Geophys. Res. Lett. 47, e2020GL090263 (2020)

    ADS  Google Scholar 

  73. F. Wang, D. Du, H. Bi, H. Wang, H. Chen, H. Li, Quantitative characterization of foam transient structure in porous media and analysis of its flow behavior based on fractal theory. Ind. Eng. Chem. Res. 59, 5158–5166 (2020)

    Google Scholar 

  74. F. Wang, Z. Li, H. Chen, X. Zhang, Establishment and application of a structure evolution model for aqueous foam based on fractal theory. R. Soc. Chem. Adv. 7, 3650–3659 (2017)

    Google Scholar 

  75. F. Wang, H. Li, D. Du, X. Dong, Investigation of dynamic texture and flow characteristics of foam transport in porous media based on fractal theory. Fractals 27, 1940013 (2019)

    ADS  Google Scholar 

  76. M.E. Taylor, Nonlinear hyperbolic equations, in Partial Differential Equations III. Applied Mathematical Sciences, vol. 117, ed. by M.E. Taylor (Springer, New York, 1996). https://doi.org/10.1007/978-1-4757-4190-2_4

    Chapter  Google Scholar 

  77. J.-H. He, Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  78. J. Biazar, H. Ghazvini, Homotopy perturbation method for solving hyperbolic partial differential equations. Comput. Math. Appl. 56, 453–458 (2008)

    MathSciNet  MATH  Google Scholar 

  79. P. Lehmann, F. Hoogland, S. Assouline, D. Or, The foam drainage equation for drainage dynamics in unsaturated porous media. Water Resour. Res. 53, 5706–5724 (2017)

    ADS  Google Scholar 

  80. F. Moebius, D. Or, Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J. Colloid Interface Sci. 377, 406–415 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for useful comments and valuable suggestions.

Funding

The authors would like to thank Chiang Mai University for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

RAE-N contributed to the conceptualization, formal analysis, investigation, and methodology; WA contributed to the sources and investigation.

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A., Anukool, W. Foam drainage equation in fractal dimensions: breaking and instabilities. Eur. Phys. J. E 46, 110 (2023). https://doi.org/10.1140/epje/s10189-023-00368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00368-6

Navigation