Skip to main content
Log in

Mixtures of self-propelled particles interacting with asymmetric obstacles

  • Regular Article – Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In the presence of an obstacle, active particles condensate into a surface “wetting” layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of “fast” and “slow” active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion “diversity,” defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The modified WCA potential used here has smooth second derivative, allowing it to be more suitable for (future) theoretical developments. Other repulsive potentials produce similar results.

References

  1. N. Sepúlveda, R. Soto, Wetting transitions displayed by persistent active particles. Phys. Rev. Lett. 119(7), 078001 (2017)

    Article  ADS  Google Scholar 

  2. X. Yang, M.L. Manning, M.C. Marchetti, Aggregation and segregation of confined active particles. Soft Matter 10(34), 6477–6484 (2014)

    Article  ADS  Google Scholar 

  3. M.E. Cates, J. Tailleur, Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6(1), 219–244 (2015)

    Article  ADS  Google Scholar 

  4. M. Rojas-Vega, P. Castro, R. Soto, Wetting dynamics by mixtures of fast and slow self-propelled particles. Phys. Rev. E 107, 014608 (2023)

    Article  ADS  Google Scholar 

  5. R. Wittmann, J.M. Brader, Active Brownian particles at interfaces: an effective equilibrium approach. EPL (Europhys. Lett.) 114(6), 68004 (2016)

    Article  ADS  Google Scholar 

  6. P. Castro, S. Diles, R. Soto, P. Sollich, Active mixtures in a narrow channel: motility diversity changes cluster sizes. Soft Matter 17(8), 2050–2061 (2021)

    Article  ADS  Google Scholar 

  7. F. Turci, N.B. Wilding, Wetting transition of active Brownian particles on a thin membrane. Phys. Rev. Lett. 127(23), 238002 (2021)

    Article  ADS  Google Scholar 

  8. N. Sepúlveda, R. Soto, Universality of active wetting transitions. Phys. Rev. E 98(5), 052141 (2018)

    Article  ADS  Google Scholar 

  9. R. Soto, R. Golestanian, Run-and-tumble dynamics in a crowded environment: persistent exclusion process for swimmers. Phys. Rev. E 89(1), 012706 (2014)

    Article  ADS  Google Scholar 

  10. P. Nie, F. Alarcon, I. López-Montero, B. Orgaz, C. Valeriani, M. Pica Ciamarra, In-silico modeling of early-stage biofilm formation. Soft Mater. 19(3), 346–358 (2021)

    Article  Google Scholar 

  11. G. Fausti, E. Tjhung, M. Cates, C. Nardini, Capillary interfacial tension in active phase separation. Phys. Rev. Lett. 127(6), 068001 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  12. I. Grobas, M. Polin, M. Asally, Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. Elife 10, 62632 (2021)

    Article  Google Scholar 

  13. C.O. Reichhardt, C. Reichhardt, Ratchet effects in active matter systems. Annu. Rev. Condens. Matter Phys. 8, 51–75 (2017)

    Article  ADS  Google Scholar 

  14. W. Yan, J.F. Brady, The curved kinetic boundary layer of active matter. Soft Matter 14(2), 279–290 (2018)

    Article  ADS  Google Scholar 

  15. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. P. Galajda, J. Keymer, P. Chaikin, R. Austin, A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189(23), 8704–8707 (2007)

    Article  Google Scholar 

  17. P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Self-propelled Janus particles in a ratchet: numerical simulations. Phys. Rev. Lett. 110(26), 268301 (2013)

    Article  ADS  Google Scholar 

  18. A. Pototsky, A.M. Hahn, H. Stark, Rectification of self-propelled particles by symmetric barriers. Phys. Rev. E 87(4), 042124 (2013)

    Article  ADS  Google Scholar 

  19. J. Stenhammar, R. Wittkowski, D. Marenduzzo, M.E. Cates, Light-induced self-assembly of active rectification devices. Sci. Adv. 2(4), 1501850 (2016)

    Article  ADS  Google Scholar 

  20. W.-J. Zhu, T.-C. Li, W.-R. Zhong, B.-Q. Ai, Rectification and separation of mixtures of active and passive particles driven by temperature difference. J. Chem. Phys. 152(18), 184903 (2020)

    Article  ADS  Google Scholar 

  21. C.G. Wagner, M.F. Hagan, A. Baskaran, Steady states of active Brownian particles interacting with boundaries. J. Stat. Mech.: Theory Exp. 2022(1), 013208 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.G. Wagner, M.F. Hagan, A. Baskaran, Steady-state distributions of ideal active Brownian particles under confinement and forcing. J. Stat. Mech.: Theory Exp. 2017(4), 043203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-F. Derivaux, R.L. Jack, M.E. Cates, Rectification in a mixture of active and passive particles subject to a ratchet potential. J. Stat. Mech.: Theory Exp. 2022(4), 043203 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. B.-Q. Ai, Ratchet transport powered by chiral active particles. Sci. Rep. 6(1), 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  25. S. Savel’ev, F. Marchesoni, F. Nori, Controlling transport in mixtures of interacting particles using Brownian motors. Phys. Rev. Lett. 91(1), 010601 (2003)

    Article  ADS  Google Scholar 

  26. S. Savelev, F. Marchesoni, F. Nori, Manipulating small particles in mixtures far from equilibrium. Phys. Rev. Lett. 92(16), 160602 (2004)

    Article  ADS  Google Scholar 

  27. A. Guidobaldi, Y. Jeyaram, I. Berdakin, V.V. Moshchalkov, C.A. Condat, V.I. Marconi, L. Giojalas, A.V. Silhanek, Geometrical guidance and trapping transition of human sperm cells. Phys. Rev. E 89(3), 032720 (2014)

    Article  ADS  Google Scholar 

  28. F.Q. Potiguar, G. Farias, W. Ferreira, Self-propelled particle transport in regular arrays of rigid asymmetric obstacles. Phys. Rev. E 90(1), 012307 (2014)

    Article  ADS  Google Scholar 

  29. E.P. Ipiña, S. Otte, R. Pontier-Bres, D. Czerucka, F. Peruani, Bacteria display optimal transport near surfaces. Nat. Phys. 15(6), 610–615 (2019)

    Article  Google Scholar 

  30. H.C. Berg, E. Coli in Motion (Springer, New York, 2008)

    Google Scholar 

  31. J. Sparacino, G.L. Miño, A.J. Banchio, V. Marconi, Solitary choanoflagellate dynamics and microconfined directed transport. J. Phys. D Appl. Phys. 53(50), 505403 (2020)

    Article  Google Scholar 

  32. I. Berdakin, A.V. Silhanek, H.N.M. Cortéz, V.I. Marconi, C.A. Condat, Quantifying the sorting efficiency of self-propelled run-and-tumble swimmers by geometrical ratchets. Cent. Eur. J. Phys. 11(12), 1653–1661 (2013)

    Google Scholar 

  33. P. Castro, P. Sollich, Phase separation dynamics of polydisperse colloids: a mean-field lattice-gas theory. Phys. Chem. Chem. Phys. 19, 22509–22527 (2017)

    Article  Google Scholar 

  34. P. Castro, P. Sollich, Critical phase behavior in multi-component fluid mixtures: complete scaling analysis. J. Chem. Phys. 149(20), 204902 (2018)

    Article  ADS  Google Scholar 

  35. P. Castro, P. Sollich, Phase separation of mixtures after a second quench: composition heterogeneities. Soft Matter 15(45), 9287–9299 (2019)

    Article  ADS  Google Scholar 

  36. P.S. Castro Melo, Phase Separation of Polydisperse Fluids (King’s College London, London, 2019)

    Google Scholar 

  37. J. Stenhammar, R. Wittkowski, D. Marenduzzo, M.E. Cates, Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Phys. Rev. Lett. 114(1), 018301 (2015)

    Article  ADS  Google Scholar 

  38. N.K. Agrawal, P.S. Mahapatra, Alignment-mediated segregation in an active-passive mixture. Phys. Rev. E 104(4), 044610 (2021)

    Article  ADS  Google Scholar 

  39. T. Kolb, D. Klotsa, Active binary mixtures of fast and slow hard spheres. Soft Matter 16(8), 1967–1978 (2020)

    Article  ADS  Google Scholar 

  40. C. Hoell, H. Löwen, A.M. Menzel, Multi-species dynamical density functional theory for microswimmers: derivation, orientational ordering, trapping potentials, and shear cells. J. Chem. Phys. 151(6), 064902 (2019)

    Article  ADS  Google Scholar 

  41. R. Wittkowski, J. Stenhammar, M.E. Cates, Nonequilibrium dynamics of mixtures of active and passive colloidal particles. New J. Phys. 19(10), 105003 (2017)

    Article  ADS  Google Scholar 

  42. S.C. Takatori, J.F. Brady, A theory for the phase behavior of mixtures of active particles. Soft Matter 11(40), 7920–7931 (2015)

    Article  ADS  Google Scholar 

  43. A. Grosberg, J.-F. Joanny, Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats. Phys. Rev. E 92(3), 032118 (2015)

    Article  ADS  Google Scholar 

  44. A. Curatolo, N. Zhou, Y. Zhao, C. Liu, A. Daerr, J. Tailleur, J. Huang, Cooperative pattern formation in multi-component bacterial systems through reciprocal motility regulation. Nat. Phys. 16(11), 1152–1157 (2020)

    Article  Google Scholar 

  45. Y. Wang, Z. Shen, Y. Xia, G. Feng, W. Tian, Phase separation and super diffusion of binary mixtures of active and passive particles. Chin. Phys. B 29(5), 053103 (2020)

    Article  ADS  Google Scholar 

  46. B. Meer, V. Prymidis, M. Dijkstra, L. Filion, Predicting the phase behavior of mixtures of active spherical particles. J. Chem. Phys. 152(14), 144901 (2020)

    Article  ADS  Google Scholar 

  47. P. Dolai, A. Simha, S. Mishra, Phase separation in binary mixtures of active and passive particles. Soft Matter 14(29), 6137–6145 (2018)

    Article  ADS  Google Scholar 

  48. A. Villa-Torrealba, C. Chávez-Raby, P. Castro, R. Soto, Run-and-tumble bacteria slowly approaching the diffusive regime. Phys. Rev. E 101, 062607 (2020)

    Article  ADS  Google Scholar 

  49. S. Kumar, J.P. Singh, D. Giri, S. Mishra, Effect of polydispersity on the dynamics of active Brownian particles. Phys. Rev. E 104(2), 024601 (2021)

    Article  ADS  Google Scholar 

  50. S. Pattanayak, J.P. Singh, M. Kumar, S. Mishra, Speed inhomogeneity accelerates information transfer in polar flock. Phys. Rev. E 101(5), 052602 (2020)

    Article  ADS  Google Scholar 

  51. Semwal, V., Prakash, J., Mishra, S.: Dynamics of active run and tumble and passive particles in binary mixture. arXiv:2112.13015 (2021)

  52. J.P. Singh, S. Mishra, Phase separation in a binary mixture of self-propelled particles with variable speed. Physica A 544, 123530 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Schmid, N. Wilding, Wetting of a symmetrical binary fluid mixture on a wall. Phys. Rev. E 63(3), 031201 (2001)

    Article  ADS  Google Scholar 

  54. R. Brito, H. Enríquez, S. Godoy, R. Soto, Segregation induced by inelasticity in a vibrofluidized granular mixture. Phys. Rev. E 77(6), 061301 (2008)

    Article  ADS  Google Scholar 

  55. A. Costanzo, J. Elgeti, T. Auth, G. Gompper, M. Ripoll, Motility-sorting of self-propelled particles in microchannels. EPL (Europhys. Lett.) 107(3), 36003 (2014)

    Article  ADS  Google Scholar 

  56. E. Mones, A. Czirók, T. Vicsek, Anomalous segregation dynamics of self-propelled particles. New J. Phys. 17(6), 063013 (2015)

    Article  ADS  Google Scholar 

  57. S. Mishra, K. Tunstrøm, I.D. Couzin, C. Huepe, Collective dynamics of self-propelled particles with variable speed. Phys. Rev. E 86(1), 011901 (2012)

  58. W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. Whitesides, Escherichia coli swim on the right-hand side. Nature 435(7046), 1271–1274 (2005)

    Article  ADS  Google Scholar 

  59. R. Brito, R. Soto, Competition of brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. Spec. Top. 179(1), 207–219 (2009)

    Article  Google Scholar 

  60. J.-X. Pan, H. Wei, M.-J. Qi, H.-F. Wang, J.-J. Zhang, K. Chen et al., Vortex formation of spherical self-propelled particles around a circular obstacle. Soft Matter 16(23), 5545–5551 (2020)

    Article  ADS  Google Scholar 

  61. L. Caprini, U.M.B. Marconi, A. Puglisi, Spontaneous velocity alignment in motility-induced phase separation. Phys. Rev. Lett. 124(7), 078001 (2020)

    Article  ADS  Google Scholar 

  62. T. Speck, A. Jayaram, Vorticity determines the force on bodies immersed in active fluids. Phys. Rev. Lett. 126(13), 138002 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  63. K.W. Desmond, E.R. Weeks, Random close packing of disks and spheres in confined geometries. Phys. Rev. E 80(5), 051305 (2009)

    Article  ADS  Google Scholar 

  64. R.C. Maloney, G.-J. Liao, S.H. Klapp, C.K. Hall, Clustering and phase separation in mixtures of dipolar and active particles. Soft Matter 16(15), 3779–3791 (2020)

    Article  ADS  Google Scholar 

  65. S. Gokhale, J. Li, A. Solon, J. Gore, N. Fakhri, Dynamic clustering of passive colloids in dense suspensions of motile bacteria. Phys. Rev. E 105(5), 054605 (2022)

    Article  ADS  Google Scholar 

  66. Y. Baek, A.P. Solon, X. Xu, N. Nikola, Y. Kafri, Generic long-range interactions between passive bodies in an active fluid. Phys. Rev. Lett. 120(5), 058002 (2018)

    Article  ADS  Google Scholar 

  67. T. Faúndez, B. Espinoza, R. Soto, F. Guzmán-Lastra, Microbial adhesion on circular obstacles: an optimization study. Front. Phys. 10, 865937 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

MR-V and RS are supported by Fondecyt Grant No. 1220536 and Millennium Science Initiative Program NCN19_170D of ANID, Chile. P.d.C. was supported by Scholarships Nos. 2021/10139-2 and 2022/13872-5 and ICTP-SAIFR Grant No. 2021/14335-0, all granted by São Paulo Research Foundation (FAPESP), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Original conceptualization: PDC; Simulations: MR-V; Formal analysis and investigation: MR-V, PDC and RS; Writing—original draft preparation: MR-V and PDC; Writing—review and editing: MR-V, PDC and RS; Supervision: PDC and RS.

Corresponding author

Correspondence to Pablo de Castro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 74188 KB)

Supplementary file 2 (mp4 135702 KB)

Supplementary file 3 (mp4 124470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Vega, M., de Castro, P. & Soto, R. Mixtures of self-propelled particles interacting with asymmetric obstacles. Eur. Phys. J. E 46, 95 (2023). https://doi.org/10.1140/epje/s10189-023-00354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00354-y

Navigation