Skip to main content
Log in

Effect of excitation frequency on dissipation behavior of vibrated granular balls

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The dissipation behavior of granular balls in a quasi-2D vertically oscillating closed container is studied by the discrete element method with varying excitation frequencies in this work. Combining the dynamic behavior with dissipation effect of vibrated granular balls, the optimal damping effect of the phase transition critical stage between granular density inversion and granular Leidenfrost effect that involves four high damping granular phases (HDGPs) is revealed. Moreover, the high damping granular phases near and away from this phase transition critical stage are compared and analyzed further, which indicates the universal dynamic behavior of dense granular clusters playing the optimal damping effect. Finally, the optimal damping mechanism of granular balls in the quasi-2D closed container is clarified.

Graphical abstract

Damping properties and motion states of partic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

Data will be made available on request. The data that support the findings of this study are available from authors’ mails. Restrictions apply to the availability of these data, which were used under license for this study.

References

  1. H.V. Panossian, Structural damping enhancement via non-obstructive particle damping technique. J. Vib. Acoust. 114, 101–105 (1992)

    Article  Google Scholar 

  2. J.M. Bajkowski, B. Dyniewicz, C.I. Bajer, Damping properties of a beam with vacuum-packed granular damper. J. Sound Vib. 341, 74–85 (2015)

    Article  ADS  Google Scholar 

  3. Z. Xu, M.Y. Wang, T. Chen, Particle damping for passive vibration suppression: numerical modelling and experimental investigation. J. Sound Vib. 279(3–5), 1097–1120 (2005)

    Article  ADS  Google Scholar 

  4. P. Veeramuthuvel, K. Shankar, K.K. Sairajan, Application of particle damper on electronic packages for spacecraft. Acta Astronaut. 127, 260–270 (2016)

    Article  ADS  Google Scholar 

  5. Z. Xu, M.Y. Wang, T. Chen, A particle damper for vibration and noise reduction. J. Sound Vib. 270(4), 1033–1040 (2004)

    Article  ADS  Google Scholar 

  6. S. Chockalingam, U. Natarajan, A. George Cyril, Damping investigation in boring bar using hybrid copper-zinc particles. J. Vib. Control 23, 2128–2134 (2015)

    Article  Google Scholar 

  7. Z. Lu, D. Wang, S.F. Masri et al., An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers. Smart Struct. Syst. 18(1), 93–115 (2016)

    Article  Google Scholar 

  8. A.S. Velichkovich, S.V. Velichkovich, Vibration-impact damper for controlling the dynamic drillstring conditions. Chem. Pet. Eng. 37(3–4), 213–215 (2001)

    Article  MATH  Google Scholar 

  9. S.M. Baad, R. Patil, M. Qaimi, Hand arm vibration alleviation of motorcycle handlebar using particle damper. Int. J. Eng. Manuf. (IJEM) 7(1), 26 (2017)

    Google Scholar 

  10. W. Liu, G.R. Tomlinson, J. Rongong, The dynamic characterisation of disk geometry particle dampers. J. Sound Vib. 280(3–5), 849–861 (2005)

    Article  ADS  Google Scholar 

  11. K. Zhang et al., Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper. J. Sound Vib. 36, 30–43 (2016)

    Article  ADS  Google Scholar 

  12. F. Terzioglu, J.A. Rongong, C.E. Lord, Motional phase maps for estimating the effectiveness of granular dampers. Mech. Syst. Signal Process. 188, 110038 (2023)

    Article  Google Scholar 

  13. C. Salueña, T. Pöschel, S.E. Esipov, Dissipative properties of vibrated granular materials. Phys. Rev. E 59(4), 4422 (1999)

    Article  ADS  Google Scholar 

  14. M.N. Bannerman et al., Movers and shakers: Granular damping in microgravity. Phys. Rev. E 84(1), 011301 (2011)

    Article  ADS  Google Scholar 

  15. A. Sack et al., Energy dissipation in driven granular matter in the absence of gravity. Phys. Rev. Lett. 111(1), 018001 (2013)

    Article  ADS  Google Scholar 

  16. G.R. Tomlinson, D. Pritchard, R. Wareing, Damping characteristics of particle dampers—some preliminary results. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 215(3), 253–257 (2001)

    Article  Google Scholar 

  17. C.X. Wong, M.C. Daniel, J.A. Rongong, Energy dissipation prediction of particle dampers. J. Sound Vib. 319(1–2), 91–118 (2009)

    Article  ADS  Google Scholar 

  18. G. D’Anna, G. Grémaud, The jamming route to the glass state in weakly perturbed granular media. Nature 413(6854), 407–409 (2001)

    Article  ADS  Google Scholar 

  19. G. D’Anna, G. Gremaud, Vibration-induced jamming transition in granular media. Phys. Rev. E 64(1), 011306 (2001)

    Article  ADS  Google Scholar 

  20. K. Zhang, T. Chen, Li. He, Damping behaviors of granular particles in a vertically vibrated closed container. Powder Technol. 321, 173–179 (2017)

    Article  Google Scholar 

  21. K. Zhang et al., Dissipation behaviors of granular balls in a shaken closed container. Mech. Syst. Signal Process. 172, 108986 (2022)

    Article  Google Scholar 

  22. K. Zhang et al., Dissipation behaviors of suspended granular balls in a vibrated closed container. Powder Technol. 399, 117158 (2022)

    Article  Google Scholar 

  23. Zhang, Kai, et al. From solid-like to floating: evolution of dense granular cluser in dissipation behavior (submitted), https://www.researchgate.net/publication/363566289

  24. L. Yidan, A.D. Rosato, Macroscopic behavior of vibrating beds of smooth inelastic spheres. Phys. Fluids 7(8), 1818–1831 (1995)

    Article  ADS  Google Scholar 

  25. P. Eshuis et al., Granular Leidenfrost effect: experiment and theory of floating particle clusters. Phys. Rev. Lett. 95(25), 258001 (2005)

    Article  ADS  Google Scholar 

  26. P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  27. K. Mao et al., DEM simulation of particle damping. Powder Technol. 142(2–3), 154–165 (2004)

    Article  Google Scholar 

  28. H.P. Zhu et al., Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008)

    Article  Google Scholar 

  29. K.L. Johnson, K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  30. R.D. Mindlin, H.E.R.B.E.R.T. Deresiewicz, Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. G. Lu, J.R. Third, C.R. Müller, Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    Article  Google Scholar 

  32. DEM Solutions Ltd. EDEM 2.4 Theory Reference Guide. DEM Solutions Ltd., Edinburgh, UK, 2011

  33. P. Eshuis et al., Phase diagram of vertically shaken granular matter. Phys. Fluids 19(12), 123301 (2007)

    Article  ADS  MATH  Google Scholar 

  34. G.M. Hu, Analysis and simulation of granular system by discrete element method using EDEM. Wuhan University of Technology Press: Wuhan, China 6–20 (2010)

  35. H.M. Jaeger, S.R. Nagel, Physics of the granular state. Science 255(5051), 1523–1531 (1992)

    Article  ADS  Google Scholar 

  36. F. Giacco et al., Rattler-induced aging dynamics in jammed granular systems. Soft Matter 13(48), 9132–9137 (2017)

    Article  ADS  Google Scholar 

  37. J. Ze-Hui, W. Yun-Ying, Wu. Jing, Subharmonic motion of granular particles under vertical vibrations. Europhys. Lett. 74(3), 417 (2006)

    Article  ADS  Google Scholar 

  38. K. Zhang et al., Granular wave-solid state: an accident of density inversion? Granular Matter 24(4), 108 (2022)

    Article  Google Scholar 

  39. K. Zhang, Uncertainty of vibrated granular balls in dynamical behavior (Original manuscript), https://www.researchgate.net/publication/360074551

  40. M. Faraday, XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. London 121, 299–340 (1831)

    Article  ADS  Google Scholar 

  41. P. Evesque, J. Rajchenbach, Instability in a sand heap. Phys. Rev. Lett. 62(1), 44 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank Stefan Luding, Thorsten Pöschel, Raphael Blumenfeld for guidance. This work was supported by the Doctoral Foundation of Xi'an University of Science and Technology (2018QDJ027), the Natural Science Basic Research Program of Shaanxi Province (2020JQ-749) and the Postdoctoral Research Foundation of China (2019M653872XB).

Author information

Authors and Affiliations

Authors

Contributions

YC did methodology and writing—review and editing. MC done software, investigation, and writing—original draft. KZ was involved in conceptualization, methodology, and supervision. WL validated and investigated the study.

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, M., Zhang, K. et al. Effect of excitation frequency on dissipation behavior of vibrated granular balls. Eur. Phys. J. E 46, 71 (2023). https://doi.org/10.1140/epje/s10189-023-00330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00330-6

Navigation