Skip to main content
Log in

Melting of dsDNA attached with AuNPs

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

DNA-linked gold nanoparticles (DNA-AuNPs) are combined nanomaterials that contain the optical and electronic properties of AuNPs with the unique functions of DNA. These hybrid systems are used in various nanobiotechnology, medical, and pharmaceutical sciences (Löwe et al. in FEBS J 287(23):5039, 2020; Speer et al. in Annu Rev Biophys 51:267, 2022). In recent years, there has been an increasing interest in studying the behavior of DNA-AuNPs in the presence of molecular solvents. In the present work, we study the thermal melting of DNA-linked gold nanoparticles (DNA-AuNP). In the first part of the study, we find the melting profile of short heterogeneous DNA-linked AuNP in the presence of solvent in the solution. We also study the effect of the location of the gold nanoparticle attached to the DNA molecule. In this case, we move the location of the AuNP from one end to the other. We found that while the melting temperature is susceptible to the location of the AuNP when it is near the ends, there is a region in the middle section of the chain where the melting temperature remains constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. M. Löwe, M. Kalacheva, A.J. Boersma, A. Kedrov, FEBS J. 287(23), 5039 (2020)

    Article  Google Scholar 

  2. S.L. Speer, C.J. Stewart, L. Sapir, D. Harries, G.J. Pielak, Annu. Rev. Biophys. 51, 267 (2022)

    Article  Google Scholar 

  3. G. Rivas, A.P. Minton, Biophys. Rev. 10(2), 241 (2018)

    Article  Google Scholar 

  4. J. Kim, C. Jeon, H. Jeong, Y. Jung, B.Y. Ha, Soft Matter 11(10), 1877 (2015)

    Article  ADS  Google Scholar 

  5. D. Miyoshi, N. Sugimoto, Biochimie 90(7), 1040 (2008)

    Article  Google Scholar 

  6. G. Nettesheim, I. Nabti, C.U. Murade, G.R. Jaffe, S.J. King, G.T. Shubeita, Nat. Phys. 16(11), 1144 (2020)

    Article  Google Scholar 

  7. T.P. Silverstein, K. Slade, J. Chem. Educ. 96(11), 2476 (2019)

    Article  Google Scholar 

  8. P. Dey, A. Bhattacherjee, Soft Matter 15(9), 1960 (2019)

    Article  ADS  Google Scholar 

  9. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382(1476–4687), 607 (1996)

    Article  ADS  Google Scholar 

  10. S.Y. Park, J.S. Lee, D. Georganopoulou, C.A. Mirkin, G.C. Schatz, J. Phys. Chem. B 110, 12673 (2006)

    Article  Google Scholar 

  11. R. Jin, G. Wu, Z. Li, C.A. Mirkin, G.C. Schatz, J. Am. Chem. Soc. 125(6), 1643 (2003). https://doi.org/10.1021/ja021096v. (PMID: 12568626)

    Article  Google Scholar 

  12. J.M. Gibbs, S.J. Park, D.R. Anderson, K.J. Watson, C.A. Mirkin, S.T. Nguyen, J. Am. Chem. Soc. 127, 1170 (2005)

    Article  Google Scholar 

  13. T.R. Prytkova, I. Eryazici, B. Stepp, S.B. Nguyen, G.C. Schatz, J. Phys. Chem. B 114, 2627 (2010)

    Article  Google Scholar 

  14. B.R. Stepp, J.M. Gibbs-Davis, D.L.F. Koh, S.T. Nguyen, J. Am. Chem. Soc. 130, 9628 (2008)

    Article  Google Scholar 

  15. S.Y. Park, D. Stroud, Phys. Rev. B 67, 212202 (2003)

    Article  ADS  Google Scholar 

  16. H. Long, A. Kudlay, G.C. Schatz, J. Phys. Chem. B 110, 2918 (2006)

    Article  Google Scholar 

  17. S.B. Zimmerman, L.D. Murphy, FEBS Lett. 390(3), 245 (1996)

    Article  Google Scholar 

  18. S. Hormeno, B. Ibarra, J.M. Valpuesta, J.L. Carrascosa, J. Ricardo Arias-Gonzalez Biopolymers 97(4) 2012

  19. I. Khimji, J. Shin, J. Liu, Chem. Commun. 49(13), 1306 (2013). https://doi.org/10.1039/C2CC38627E

    Article  Google Scholar 

  20. A.B. Menhaj, B.D. Smith, J. Liu, Chem. Sci. 3(11), 3216 (2012)

    Article  Google Scholar 

  21. S. Dutta, in Gold and Silver Nanoparticles (Elsevier), pp. 411–434 (2023)

  22. A.K.R. Lytton-Jean, J.M. Gibbs-Davis, H. Long, G.C. Schatz, C.A. Mirkin, S.T. Nguyen, Adv. Mater. 21(6), 706 (2009). https://doi.org/10.1002/adma.200801724

    Article  Google Scholar 

  23. E. Grueso, R.M. Giráldez-Pérez, P. Perez-Tejeda, E. Roldán, R. Prado-Gotor, Phys. Chem. Chem. Phys. 21, 11019 (2019). https://doi.org/10.1039/C9CP01162E

    Article  Google Scholar 

  24. C. Lu, S. Zhou, F. Gao, J. Lin, J. Liu, J. Zheng, TrAC Trend Anal Chem 148 116533 (2022)

  25. O.S. Lee, T.R. Prytkova, G.C. Schatz, J. Phys. Chem. Lett. 1(12), 1781 (2010). https://doi.org/10.1021/jz100435a. (PMID: 20606716)

    Article  Google Scholar 

  26. H. Wang, R. Yang, L. Yang, W. Tan, ACS Nano 3(9), 2451 (2009)

    Article  Google Scholar 

  27. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112(5), 2739 (2012). https://doi.org/10.1021/cr2001178. (PMID: 22295941)

    Article  Google Scholar 

  28. H. Karimata, S.i. Nakano, T. Ohmichi, J. Kawakami, N. Sugimoto, Nucleic Acids Symposium Series, 48(1), 107 (2004)

  29. M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62(23), 2755 (1989). https://doi.org/10.1103/PhysRevLett.62.2755

    Article  ADS  Google Scholar 

  30. T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47(1), R44 (1993). https://doi.org/10.1103/PhysRevE.47.R44

    Article  ADS  Google Scholar 

  31. S. Cocco, R. Monasson, Phys. Rev. Lett. 83(24), 5178 (1999). https://doi.org/10.1103/PhysRevLett.83.5178

    Article  ADS  Google Scholar 

  32. N. Singh, Y. Singh, Eur. Phys. J. E 17(1), 7 (2005). https://doi.org/10.1140/epje/i2004-10100-7

    Article  Google Scholar 

  33. M. Zoli, Phys. Chem. Chem. Phys. 22, 26901 (2020). https://doi.org/10.1039/D0CP04046K

    Article  Google Scholar 

  34. M. Zoli, J. Theor. Biol. 354, 95 (2014). https://doi.org/10.1016/j.jtbi.2014.03.031

    Article  ADS  Google Scholar 

  35. Y.l. Zhang, W.M. Zheng, J.X. Liu, Y.Z. Chen, Phys. Rev. E 56(6), 7100 (1997). https://doi.org/10.1103/PhysRevE.56.7100

  36. T.S. van Erp, S. Cuesta-Lopez, M. Peyrard, Eur. Phys. J. E 20(4), 421 (2006). https://doi.org/10.1140/epje/i2006-10032-2

    Article  Google Scholar 

  37. A. Singh, N. Singh, Phys. Rev. E 92, 032703 (2015). https://doi.org/10.1103/PhysRevE.92.032703

    Article  ADS  Google Scholar 

  38. M. Zoli, Phys. Chem. Chem. Phys. 21, 12566 (2019). https://doi.org/10.1039/C9CP01098J

    Article  Google Scholar 

  39. M. Zoli, J. Chem. Phys. 154(19), 194102 (2021). https://doi.org/10.1063/5.0046891

    Article  ADS  Google Scholar 

  40. A. Singh, A. Maity, N. Singh, Entropy 24(11) (2022). https://doi.org/10.3390/e24111587. https://www.mdpi.com/1099-4300/24/11/1587

  41. A. Campa, A. Giansanti, Phys. Rev. E 58(3), 3585 (1998). https://doi.org/10.1103/PhysRevE.58.3585

    Article  ADS  Google Scholar 

  42. N. Singh, Y. Singh, Phys. Rev. E 64(4), 042901 (2001). https://doi.org/10.1103/PhysRevE.64.042901

    Article  ADS  Google Scholar 

  43. A. Campa, A. Giansanti, J. Biol. Phys. 24, 14 (1999)

  44. D. Mohanta, D. Giri, S. Kumar, Phys.: Stat. Mech. Appl. 562, 125379 (2021). https://doi.org/10.1016/j.physa.2020.125379

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Science and Engineering Research Board (SERB), New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Neha Mathur.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, N., Singh, N. Melting of dsDNA attached with AuNPs. Eur. Phys. J. E 46, 58 (2023). https://doi.org/10.1140/epje/s10189-023-00318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00318-2

Navigation