Skip to main content
Log in

Nonlinear evolution of viscoplastic film flows down an inclined plane

  • Regular Article – Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this article, we experimentally investigate the nonlinear behaviour of a viscoplastic film flow down an inclined plane. We focus on the nonlinear instabilities that appear as roll waves. Roll waves are generated by perturbing a permanent flow of Herschel–Bulkley fluid (Carbopol 980) at low frequencies. To determine the local thickness of the film, we used a laser sensor and a camera to globally capture the transverse shape of the waves. For a regular forcing, the results show the existence of different regimes. First, we observe primary instabilities below the cut-off frequency at the entrance of the channel. After the exponential growth of the wave in the linear regime, we recognise the nonlinear dynamics with the existence of finite amplitude waves. This finite amplitude depends on the frequency, the Reynolds number and the inclination angle. The results show that this instability is supercritical. At moderate Reynolds numbers, the finite 2-D waves become sensitive to transverse perturbations, due to a secondary instability, and become 3-D waves. The experimental results illustrate a phenomenology of viscoplastic film flows similar to Newtonian fluids, except for the capillary waves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R.F. Dressler, Mathematical solution of the problem of roll-waves in inclined open channels. Commun. Pure Appl. Math. 2(2–3), 149–194 (1949). https://doi.org/10.1002/cpa.3160020203

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Engelund, W. Zhaohui, Instability of hyperconcentrated flow. J. Hydraul. Eng. 110(3), 219–233 (1984). https://doi.org/10.1061/(ASCE)0733-9429(1984)110:3(219)

    Article  Google Scholar 

  3. C. Ancey, Plasticity and geophysical flows: a review. Viscoplastic fluids: from theory to application. J. Non-Newtonian Fluid Mech. 142(1), 4–35 (2007). https://doi.org/10.1016/j.jnnfm.2006.05.005

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Köhler, J. McElwaine, B. Sovilla, M. Ash, P. Brennan, The dynamics of surges in the 3 february 2015 avalanches in vallée de la sionne. J. Geophys. Res. Earth Surf. 121(11), 2192–2210 (2016). https://doi.org/10.1002/2016JF003887

    Article  ADS  Google Scholar 

  5. P.J. Cheng, K.C. Liu, C.C. Wang, Applied mechanics and materials. Trans. Tech. Publ. 479, 45–49 (2014). https://doi.org/10.4028/www.scientific.net/AMM.479-480.45

    Article  Google Scholar 

  6. D.J. Dhas, A. Roy, Wavy regime of a colloidal falling film. Phys. Rev. Fluids 7(6), 064307 (2022). https://doi.org/10.1103/PhysRevFluids.7.064307

    Article  ADS  Google Scholar 

  7. J. Liu, J.D. Paul, J.P. Gollub, Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69–101 (1993). https://doi.org/10.1017/S0022112093001387

    Article  ADS  Google Scholar 

  8. H.C. Chang, E. Demekhin, D. Kopelevich, Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433–480 (1993). https://doi.org/10.1017/S0022112093001521

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Kofman, S. Mergui, C. Ruyer-Quil, Three-dimensional instabilities of quasi-solitary waves in a falling liquid film. J. Fluid Mech. 757, 854–887 (2014). https://doi.org/10.1017/jfm.2014.506

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J. Liu, J. Schneider, J.P. Gollub, Three-dimensional instabilities of film flows. Phys. Fluids 7(1), 55–67 (1995). https://doi.org/10.1063/1.868782

    Article  ADS  MathSciNet  Google Scholar 

  11. F. de Oliveira, G.F. Ferreira, J.B. Maciel, Pereira, Roll waves and their generation criteria. RBRH (2021). https://doi.org/10.1590/2318-0331.262120200185

    Article  Google Scholar 

  12. J. Gray, A. Edwards, A depth-averaged-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503–534 (2014). https://doi.org/10.1017/jfm.2014.450

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Y. Forterre, O. Pouliquen, Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 21–50 (2003). https://doi.org/10.1017/S0022112003004555

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M.H. Allouche, V. Botton, S. Millet, D. Henry, S. Dagois-Bohy, B. Güzel, H. Ben Hadid, Primary instability of a shear-thinning film flow down an incline: experimental study. J. Fluid Mech. 821, R1–R11 (2017). https://doi.org/10.1017/jfm.2017.276

    Article  ADS  Google Scholar 

  15. D. Mounkaila Noma, S. Dagois-Bohy, S. Millet, V. Botton, D. Henry, H. Ben Hadid, Primary instability of a visco-plastic film down an inclined plane: experimental study. J. Fluid Mech. 922, R2 (2021). https://doi.org/10.1017/jfm.2021.528

    Article  ADS  Google Scholar 

  16. A. Tamburrino, C.F. Ihle, Roll wave appearance in bentonite suspensions flowing down inclined planes. J. Hydraul. Res. 51(3), 330–335 (2013). https://doi.org/10.1080/00221686.2013.769468

    Article  Google Scholar 

  17. M. Arai, J. Huebl, R. Kaitna, Occurrence conditions of roll waves for three grain-fluid models and comparison with results from experiments and field observation. Geophys. J. Int. 195(3), 1464–1480 (2013). https://doi.org/10.1093/gji/ggt352

    Article  ADS  Google Scholar 

  18. C. Zhao, M. Zhang, T. Zhang, F. Wang et al., Response of roll wave to suspended load and hydraulics of overland flow on steep slope. CATENA 133, 394–402 (2015). https://doi.org/10.1016/j.catena.2015.06.010

    Article  Google Scholar 

  19. B. Darbois Texier, H. Lhuissier, Y. Forterre, B. Metzger, Surface-wave instability without inertia in shear-thickening suspensions. Communications Physics 3(1), 232 (2020). https://doi.org/10.1038/s42005-020-00500-4

  20. G.F. Maciel, F.O. Ferreira, E. Cunha, G. Fiorot, Experimental apparatus for roll-wave measurements and comparison with a 1D mathematical model. J. Hydraul. Eng. 143(11), 04017,046 (2017). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001366

    Article  Google Scholar 

  21. N.J. Balmforth, I.A. Frigaard, G. Ovarlez, Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121–146 (2014). https://doi.org/10.1146/annurev-fluid-010313-141424

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Denner, A. Charogiannis, M. Pradas, C.N. Markides, B.G. Van Wachem, S. Kalliadasis, Solitary waves on falling liquid films in the inertia-dominated regime. J. Fluid Mech. 837, 491–519 (2018). https://doi.org/10.1017/jfm.2017.867

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Miladinova, G. Lebon, E. Toshev, Thin-film flow of a power-law liquid falling down an inclined plate. J. Nonnewton. Fluid Mech. 122(1–3), 69–78 (2004). https://doi.org/10.1016/j.jnnfm.2004.01.021

    Article  MATH  Google Scholar 

  24. C. Ruyer-Quil, S. Chakraborty, B. Dandapat, Wavy regime of a power-law film flow. J. Fluid Mech. 692, 220–256 (2012). https://doi.org/10.1017/jfm.2011.508

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P.J. Cheng, H.Y. Lai, Finite-amplitude long-wave instability of Bingham liquid films. Nonlinear Anal. Real World Appl. 10(3), 1500–1513 (2009). https://doi.org/10.1016/j.nonrwa.2008.01.018

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Balmforth, J. Liu, Roll waves in mud. J. Fluid Mech. 519, 33–54 (2004). https://doi.org/10.1017/S0022112004000801

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Q.F. Fu, T. Hu, L.J. Yang, Instability of a weakly viscoelastic film flowing down a heated inclined plane. Phys Fluids 30(8), 084,102 (2018). https://doi.org/10.1063/1.5041494

    Article  Google Scholar 

  28. B. Scheid, C. Ruyer-Quil, P. Manneville, Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183–222 (2006). https://doi.org/10.1017/S0022112006000978

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D. Mounkaila Noma, Stabilité d’un film viscoplastique sur un plan incliné. Thèse, Université de Lyon (2021). https://tel.archives-ouvertes.fr/tel-03663371

  30. J. Piau, Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges: meso-and macroscopic properties, constitutive equations and scaling laws. J. Nonnewton. Fluid Mech. 144(1), 1–29 (2007). https://doi.org/10.1016/j.jnnfm.2007.02.011

    Article  ADS  Google Scholar 

  31. E. Di Giuseppe, F. Corbi, F. Funiciello, A. Massmeyer, T. Santimano, M. Rosenau, A. Davaille, Characterization of carbopol® hydrogel rheology for experimental tectonics and geodynamics. Tectonophysics 642, 29–45 (2015). https://doi.org/10.1016/j.tecto.2014.12.005

    Article  ADS  Google Scholar 

  32. P. Freydier, G. Chambon, M. Naaim, Experimental characterization of velocity fields within the front of viscoplastic surges down an incline. J. Nonnewton. Fluid Mech. 240, 56–69 (2017). https://doi.org/10.1016/j.jnnfm.2017.01.002

    Article  Google Scholar 

  33. C. Di Cristo, M. Iervolino, A. Vacca, On the applicability of minimum channel length criterion for roll-waves in mud-flows. J. Hydrol. Hydromech. 61(4), 286–292 (2013). https://doi.org/10.2478/johh-2013-0036

    Article  Google Scholar 

  34. S. Alekseenko, S. Aktershev, A. Bobylev, S. Kharlamov, D. Markovich, Nonlinear forced waves in a vertical rivulet flow. J. Fluid Mech. 770, 350–373 (2015). https://doi.org/10.1017/jfm.2015.170

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Martinez and G. Geniquet for their assistance building the experimental set-up.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: conceptualisation, methodology and data collection: DMN and SDB; analysis, interpretation of results and writing: DMN, SDB and SM; and supervision, discussion and critical review: HBH, DH and VB.

Corresponding authors

Correspondence to Djibrilla Mounkaila Noma or Simon Dagois-Bohy.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 152 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounkaila Noma, D., Dagois-Bohy, S., Millet, S. et al. Nonlinear evolution of viscoplastic film flows down an inclined plane. Eur. Phys. J. E 46, 68 (2023). https://doi.org/10.1140/epje/s10189-023-00316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00316-4

Navigation