Skip to main content
Log in

Accelerating the stimuli-responsive bending of a gel using mechanical constraints

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2023

This article has been updated

Abstract

Gel bends in response to external stimuli, which has important technical applications ranging from artificial muscle to drug delivery. Here, we predict a simple and effective method to accelerate the bending of gel using mechanical constraints. We propose an exact theory of the bending dynamics of gel, which gives analytical solutions for the time evolution of the gel curvature and the relaxation time with which the system approaches to its final equilibrium state. The theory shows that the relaxation time of a slender gel confined between two parallel and rigid plates is smaller than it of a free gel with no constraints, indicating that gel bends faster when swollen in the direction parallel to the two confined plates by adding more mechanical constraints. The advantages of this new method is no need to change the microstructure and components of gel itself as previous methods. This finding brings valuable approach in designing soft robotics and healthcare devices, and is subject to experimental test.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

Change history

References

  1. R. Pratoori, R.K. Meena, P. Ghosh, R.K. Annabattula, Coupled diffusion-deformation behavior of stimuli-responsive thin polymer films. Mech. Mater. 152, 103648 (2021)

    Article  Google Scholar 

  2. A. Pandey, D.P. Holmes, Swelling-induced deformations: a materials-defined transition from macroscale to microscale deformations. Soft Matter 9, 5524–5528 (2013)

    Article  ADS  Google Scholar 

  3. G.W. Scherer, J.H. Prévost, Z.H. Wang, Bending of a poroelastic beam with lateral diffusion. Int. J. Solids Struct. 46(18), 3451–3462 (2009)

    Article  MATH  Google Scholar 

  4. A.D. Drozdov, J. deClaville Christiansen, Swelling of \(p{\rm H}\)-sensitive hydrogels. Phys. Rev. E 91, 022305 (2015)

    Article  ADS  Google Scholar 

  5. J. Landsgesell, D. Sean, P. Kreissl, K. Szuttor, C. Holm, Modeling gel swelling equilibrium in the mean field: from explicit to Poisson–Boltzmann models. Phys. Rev. Lett. 122, 208002 (2019)

    Article  ADS  Google Scholar 

  6. J. Tang, T. Katashima, C.I. Gupit, X. Li, Y. Mitsukami, Y. Yokoyama, N. Sakumichi, U. il Chung, M. Shibayama, T. Sakai, Non-swellability of polyelectrolyte gel in divalent salt solution due to aggregation formation. Polymer 250, 124894 (2022)

    Article  Google Scholar 

  7. Z.L. Wu, T. Kurokawa, S. Liang, J.P. Gong, Dual network formation in polyelectrolyte hydrogel via viscoelastic phase separation: role of ionic strength and polymerization kinetics. Macromolecules 43(19), 8202–8208 (2010)

    Article  ADS  Google Scholar 

  8. T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, J. Peetermans, Critical kinetics of volume phase transition of gels. Phys. Rev. Lett. 55, 2455–2458 (1985)

    Article  ADS  Google Scholar 

  9. R. Pelton, Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 85(1), 1–33 (2000)

    Article  ADS  Google Scholar 

  10. Y. Ren, M. Müller, Impact of molecular architecture on defect removal in lamella-forming triblock copolymers. Macromolecules 53(13), 5337–5349 (2020)

    Article  ADS  Google Scholar 

  11. B. Zheng, X.K. Man, D. Andelman, M. Doi, Enhanced electro-actuation in dielectric elastomers: the nonlinear effect of free ions. ACS Macro Lett. 10(4), 498–502 (2021)

  12. A.M. Hubbard, R.W. Mailen, M.A. Zikry, M.D. Dickey, J. Genzer, Controllable curvature from planar polymer sheets in response to light. Soft Matter 13, 2299–2308 (2017)

    Article  ADS  Google Scholar 

  13. Z. Liu, P. Calvert, Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12(4), 288–291 (2000)

    Article  ADS  Google Scholar 

  14. F. Oveissi, D.F. Fletcher, F. Dehghani, S. Naficy, Tough hydrogels for soft artificial muscles. Mater. Des. 203, 109609 (2021)

    Article  Google Scholar 

  15. G.W. Scherer, Bending of gel beams: method for characterizing elastic properties and permeability. J. Non-Cryst. Solids 142, 18–35 (1992)

    Article  ADS  Google Scholar 

  16. J. Valenza II., G.W. Scherer, Measuring permeability of rigid materials by a beam-bending method: V, isotropic rectangular plates of cement paste. J. Am. Ceram. Soc. 87(10), 1927–1931 (2004)

    Article  Google Scholar 

  17. S. Gonuguntla, W.C. Lim, F.Y. Leong, C.K. Ao, C. Liu, S. Soh, Performing calculus: asymmetric adaptive stimuli-responsive material for derivative control. Sci. Adv. 7(14), eabe5698 (2021)

    Article  ADS  Google Scholar 

  18. L. Pigard, M. Müller, Interface repulsion and lamellar structures in thin films of homopolymer blends due to thermal oscillations. Phys. Rev. Lett. 122, 237801 (2019)

    Article  ADS  Google Scholar 

  19. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778), 588–590 (2000)

    Article  ADS  Google Scholar 

  20. D.T. Eddington, D.J. Beebe, Flow control with hydrogels. Adv. Drug Deliv. Rev. 56(2), 199–210 (2004)

    Article  Google Scholar 

  21. M. Li, H. Lu, X. Wang, Z. Wang, M. Pi, W. Cui, R. Ran, Regulable mixed-solvent-induced phase separation in hydrogels for information encryption. Small 18:2205359 (2022)

  22. D.P. Holmes, M. Roché, T. Sinha, H.A. Stone, Bending and twisting of soft materials by non-homogenous swelling. Soft Matter 7(11), 5188–5193 (2011)

    Article  ADS  Google Scholar 

  23. Y. Liu, A. Sun, S. Sridhar, Z. Li, Z. Qin, J. Liu, X. Chen, H. Lu, B.Z. Tang, B.B. Xu, Spatially and reversibly actuating soft gel structure by harnessing multimode elastic instabilities. ACS Appl. Mater. Interfaces. 13(30), 36361–36369 (2021)

    Article  Google Scholar 

  24. T. Tanaka, D.J. Fillmore, Kinetics of swelling of gels. J. Chem. Phys. 70(3), 1214–1218 (1979)

    Article  ADS  Google Scholar 

  25. M.B. Dharmasiri, T.K. Mudiyanselage, Thermo-responsive poly(n-isopropyl acrylamide) hydrogel with increased response rate. Polym. Bull. 78(6), 3183–3198 (2021)

    Article  Google Scholar 

  26. K.N. Plunkett, M.L. Kraft, Q. Yu, J.S. Moore, Swelling kinetics of disulfide cross-linked microgels. Macromolecules 36(11), 3960–3966 (2003)

    Article  ADS  Google Scholar 

  27. Y. Hiei, I. Ohshima, M. Hara, T. Seki, T. Hoshino, Y. Takeoka, Shrinking rates of polymer gels composed of star-shaped polymers of n-isopropylacrylamide and dimethylacrylamide copolymers: the effect of dimethylacrylamide on the crosslinking network. Soft Matter 18, 5204–5217 (2022)

    Article  ADS  Google Scholar 

  28. H. Tajima, S. Morimoto, Y. Yoshida, K. Yamagiwa, Study on temperature response in raspberry-form gels of poly (n,n-diethylacrylamide). Polym. Sci., Ser. A 54(10), 787–797 (2012)

    Article  Google Scholar 

  29. K. Sakata, S. Taguchi, S. Uemura, M. Kunitake, S. Kawano, T. Nishimi, Continuous porous poly(n-isopropylacrylamide) gels prepared from a bicontinuous microemulsion. Chem. Lett. 43(2), 240–242 (2014)

    Article  Google Scholar 

  30. R. Gong, N. Kang, Y. Mu, J. Li, X. Wan, Synthesis of superporous hydrogels by a postpolymerization foaming protocol and their water absorbent behavior. J. Appl. Polym. Sci. 125(4), 3100–3106 (2012)

    Article  Google Scholar 

  31. Y.Z. Wan, Y.L. Wang, K.D. Yao, G.X. Cheng, Carbon fiber-reinforced gelatin composites. II. Swelling behavior. J. Appl. Polym. Sci. 75(8), 994–998 (2000)

    Article  Google Scholar 

  32. W.F. Lee, Y.C. Yeh, Effect of Porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels. J. Appl. Polym. Sci. 100(4), 3152–3160 (2006)

    Article  Google Scholar 

  33. A. Drozdov, Modeling the response of double-network gels with sacrificial junctions under swelling. Int. J. Solids Struct. 122–123, 175–188 (2017)

  34. A. Matsumoto, T. Kurata, D. Shiino, K. Kataoka, Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 37(4), 1502–1510 (2004)

    Article  ADS  Google Scholar 

  35. M. Yoshitake, Y. Kamiyama, K. Nishi, N. Yoshimoto, M. Morita, T. Sakai, K. Fujii, Defect-free network formation and swelling behavior in ionic liquid-based electrolytes of tetra-arm polymers synthesized using a michael addition reaction. Phys. Chem. Chem. Phys. 19, 29984–29990 (2017)

    Article  Google Scholar 

  36. Z. Ding, P. Lyu, A. Shi, X.K. Man, M. Doi, Diffusion-mechanical theory of gel bending induced by liquid penetration. Macromolecules 55(16), 7092–7099 (2022)

    Article  ADS  Google Scholar 

  37. M. Doi, Soft Matter Physics (Oxford University Press, Oxford, 2013)

    Book  MATH  Google Scholar 

  38. X.K. Man, M. Doi, Swelling dynamics of a disk-shaped gel. Macromolecules 54(10), 4626–4632 (2021)

    Article  ADS  Google Scholar 

  39. X.K. Man, M. Doi, Ring to mountain transition in deposition pattern of drying droplets. Phys. Rev. Lett. 116(6), 066101 (2016)

    Article  ADS  Google Scholar 

  40. M. Doi, Onsager principle in polymer dynamics. Prog. Polym. Sci. 112, 101339 (2021)

    Article  Google Scholar 

  41. H. Wang, T. Qian, X. Xu, Onsager’s variational principle in active soft matter. Soft Matter 17, 3634–3653 (2021)

    Article  ADS  Google Scholar 

  42. X. Yang, M. Wu, M. Doi, X.K. Man, Evaporation dynamics of sessile droplets: the intricate coupling of capillary, evaporation, and Marangoni flow. Langmuir 38(16), 4887–4893 (2022)

    Article  Google Scholar 

  43. Z. Zhang, T. Qian, Variational approach to droplet transport via bendotaxis: thin film dynamics and model reduction. Phys. Rev. Fluids 7, 044002 (2022)

    Article  ADS  Google Scholar 

  44. R. Pritchard, E. Terentjev, Swelling and de-swelling of gels under external elastic deformation. Polymer 54, 6954–6960 (2013)

    Article  Google Scholar 

  45. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10(11), 823–837 (2011)

    Article  ADS  Google Scholar 

  46. D. Fan, M. Li, J. Qiu, H. Xing, Z. Jiang, T. Tang, Novel method for preparing auxetic foam from closed-cell polymer foam based on the steam penetration and condensation process. ACS Appl. Mater. Interfaces. 10(26), 22669–22677 (2018)

  47. M. Doi, T. Yamaue, Variational bounds for the relaxation times of swelling gels. Phys. Rev. E 71(4), 041404 (2005)

    Article  ADS  Google Scholar 

  48. T. Yamaue, M. Doi, Theory of one-dimensional swelling dynamics of polymer gels under mechanical constraint. Phys. Rev. E 69(4), 041402 (2004)

Download references

Acknowledgements

This work was supported in part by the NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China (NSFC) under Grant No. 21961142020 and the Israel Science Foundation (ISF) under Grant No. 3396/19, NSFC Grants No. 21822302, the Fundamental Research Funds for the Central University under Grant No. YWF-22-K-101. We also acknowledge the support of the High-Performance Computing Center of Beihang University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Xingkun Man.

Additional information

I learned lots of legends about Fyl before I met him in his office in UCSB, 2012. I am glad to have this article to dedicate to Fyl Pincus who made a great impact on Physics and also on myself.

The original online version of this article was revised: A dedication to the collection: Festschrift in honor of Philip (Fyl) Pincus has been added.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, P., Ding, Z. & Man, X. Accelerating the stimuli-responsive bending of a gel using mechanical constraints. Eur. Phys. J. E 46, 40 (2023). https://doi.org/10.1140/epje/s10189-023-00303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00303-9

Navigation