Skip to main content
Log in

Porous polymer film formation by water droplet templating using polystyrene

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Studies show that the formation of breath figures over polystyrene is not clearly understood—sometimes the patterns are regular and sometimes they are barely formed. In an attempt to understand this process a little more, breath figures over polystyrene of three molecular weights and on the smooth and grooved DVD surfaces are prepared and studied. The microporous films are prepared by the evaporation of the chloroform solution of the polymers in a humid environment. The thus formed breath figure patterns are studied under a confocal laser scanning microscope and the images are analyzed. Breath figures were formed for (a) three molecular weights of the polymer (b) two casting techniques, and (c) on smooth and grooved surfaces (of a commercial DVD). The wetting of the breath figures formed by water is also reported here. The pore diameters were found to increase with increase in molecular weight and also with concentration of the polymer used. Only drop-casting method yield breath figures. Voronoi entropy, calculated from the images, indicates ordered pores on the grooved surface compared to smooth surfaces. Contact angle studies indicate a hydrophobic nature of the polymer, with the hydrophobicity increasing by the patterning.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321–323 (1994). https://doi.org/10.1038/368321a0

    Article  ADS  Google Scholar 

  2. H. Deleuze, X. Schultze, D.C. Sherrington, Polymer-supported titanates as catalysts for transesterification reactions. Polymer 39, 6109–6114 (1998). https://doi.org/10.1016/S0032-3861(98)00080-9

    Article  Google Scholar 

  3. K. Lewandowski, P. Murer, F. Svec, J.M.J. Fréchet, The design of chiral separation media using monodisperse functionalized macroporous beads: effects of polymer matrix, tether, and linkage chemistry. Anal. Chem. 70, 1629–1638 (1998). https://doi.org/10.1021/ac971196x

    Article  Google Scholar 

  4. D.B. Akolekar, A.R. Hind, S.K. Bhargava, Synthesis of macro-, meso-, and microporous carbons from natural and synthetic sources, and their application as adsorbents for the removal of quaternary ammonium compounds from aqueous solution. J. Colloid Interface Sci. 199, 92–98 (1998). https://doi.org/10.1006/jcis.1997.5352

    Article  ADS  Google Scholar 

  5. S. Xie, F. Svec, J.M.J. Fréchet, Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J. Chromatogr. A 775, 65–72 (1997). https://doi.org/10.1016/S0021-9673(97)00254-9

    Article  Google Scholar 

  6. B. François, O. Pitois, J. François, Polymer films with a self-organized honeycomb morphology. Adv. Mater. 7, 1041–1044 (1995). https://doi.org/10.1002/adma.19950071217

    Article  Google Scholar 

  7. H. Yabu, Fabrication of honeycomb films by the breath figure technique and their applications. Sci. Technol. Adv. Mater. 19, 802–822 (2018). https://doi.org/10.1080/14686996.2018.1528478

    Article  Google Scholar 

  8. O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, T. Hashimoto, Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16, 6071–6076 (2000). https://doi.org/10.1021/la0001732

    Article  Google Scholar 

  9. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79–83 (2001). https://doi.org/10.1126/science.1057887

    Article  ADS  Google Scholar 

  10. B. de Boer, U. Stalmach, H. Nijland, G. Hadziioannou, Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates. Adv. Mater. 12, 1581–1583 (2000). https://doi.org/10.1002/1521-4095(200011)12:21%3c1581::AID-ADMA1581%3e3.0.CO;2-R

    Article  Google Scholar 

  11. G. Widawski, M. Rawiso, B. François, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 (1994). https://doi.org/10.1038/369387a0

    Article  ADS  Google Scholar 

  12. M.H. Stenzel-Rosenbaum, T.P. Davis, A.G. Fane, V. Chen, Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angew. Chem. Int. Ed. 40, 3428–3432 (2001). https://doi.org/10.1002/1521-3773(20010917)40:18%3c3428::AID-ANIE3428%3e3.0.CO;2-6

    Article  Google Scholar 

  13. J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447–452 (2004). https://doi.org/10.1016/j.polymer.2003.11.019

    Article  Google Scholar 

  14. E. Bormashenko, R. Pogreb, O. Stanevsky, Y. Bormashenko, O. Gendelman, Formation of honeycomb patterns in evaporated polymer solutions: influence of the molecular weight. Mater. Lett. 59, 3553–3557 (2005). https://doi.org/10.1016/j.matlet.2005.06.026

    Article  Google Scholar 

  15. E. Ferrari, P. Fabbri, F. Pilati, Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 27, 1874–1881 (2011). https://doi.org/10.1021/la104500j

    Article  Google Scholar 

  16. M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Part Polym. Chem. 44, 2363–2375 (2006). https://doi.org/10.1002/pola.21334

    Article  ADS  Google Scholar 

  17. L. Ruiz-Rubio, I. Azpitarte, N. García-Huete, J.M. Laza, J.L. Vilas, L.M. León, Solvent and relative humidity effect on highly ordered polystyrene honeycomb patterns analyzed by Voronoi tesselation. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.44004

    Article  Google Scholar 

  18. A.V. Limaye, R.D. Narhe, A.M. Dhote, S.B. Ogale, Evidence for convective effects in breath figure formation on volatile fluid surfaces. Phys. Rev. Lett. 76, 3762–3765 (1996). https://doi.org/10.1103/PhysRevLett.76.3762

    Article  ADS  Google Scholar 

  19. B.-H. Wu, L.-W. Wu, K. Gao, S.-H. Chen, Z.-K. Xu, L.-S. Wan, Self-assembly of patterned porous films from cyclic polystyrenes via the breath figure method. J. Phys. Chem. C 122, 3926–3933 (2018). https://doi.org/10.1021/acs.jpcc.7b12286

    Article  Google Scholar 

  20. W. Dong, Y. Zhou, D. Yan, Y. Mai, L. He, C. Jin, Honeycomb-structured microporous films made from hyperbranched polymers by the breath figure method. Langmuir 25, 173–178 (2009). https://doi.org/10.1021/la802863m

    Article  Google Scholar 

  21. S. Zhai, J.-R. Ye, N. Wang, L.-H. Jiang, Q. Shen, Fabrication of porous film with controlled pore size and wettability by electric breath figure method. J Mater Chem C. 2, 7168–7172 (2014). https://doi.org/10.1039/C4TC01271B

    Article  Google Scholar 

  22. K. Nilavarasi, V. Madhurima, Controlling breath figure patterns on PDMS by concentration variation of ethanol-methanol binary vapors. Eur. Phys. J. E. 41, 82 (2018). https://doi.org/10.1140/epje/i2018-11691-x

    Article  Google Scholar 

  23. W. Cai, D. Xu, L. Qian, J. Wei, C. Xiao, L. Qian, Z. Lu, S. Cui, Force-induced transition of π–π stacking in a single polystyrene chain. J. Am. Chem. Soc. 141, 9500–9503 (2019). https://doi.org/10.1021/jacs.9b03490

    Article  Google Scholar 

  24. Y. Xu, B. Zhu, Y. Xu, A study on formation of regular honeycomb pattern in polysulfone film. Polymer 46, 713–717 (2005). https://doi.org/10.1016/j.polymer.2004.12.001

    Article  Google Scholar 

  25. A.M. Rawlett, J.A. Orlicki, N. Zander, A. Karikari, T. Long, T, Self assembled, ultra-hydrophobic micro/nano-textured surfaces. Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research (2007)

  26. H. Matsuyama, K. Ohga, T. Maki, M. Teramoto, The effect of polymer molecular weight on the structure of a honeycomb patterned thin film prepared by solvent evaporation. J. Chem. Eng. Jpn. 37, 588–591 (2004). https://doi.org/10.1252/jcej.37.588

    Article  Google Scholar 

  27. B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, J. Zhang, Formation of ordered macroporous membranes from random copolymers by the breath figure method. Polymer 46, 9508–9513 (2005). https://doi.org/10.1016/j.polymer.2005.07.035

    Article  Google Scholar 

  28. Y. Zhu, R. Sheng, T. Luo, H. Li, J. Sun, S. Chen, W. Sun, A. Cao, Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers: surface morphology control and biomedical application as scaffolds for cell growth. ACS Appl. Mater. Interfaces 3, 2487–2495 (2011)

    Article  Google Scholar 

  29. H. Li, Y. Jia, M. Du, J. Fei, J. Zhao, Y. Cui, J. Li, Self-organization of honeycomb-like porous TiO2 films by means of the breath-figure method for surface modification of titanium implants. Chem. Eur. J. 19, 5306–5313 (2013). https://doi.org/10.1002/chem.201203353

    Article  Google Scholar 

  30. B.S. Yilbas, A. Al-Sharafi, H. Ali, Surfaces for Self-Cleaning, in Self-Cleaning of Surfaces and Water Droplet Mobility. (Elsevier, 2019), pp.45–98

    Chapter  Google Scholar 

  31. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953)

    Google Scholar 

  32. Y. Hong, Electrospun Fibrous Polyurethane Scaffolds in Tissue Engineering, in Advances in Polyurethane Biomaterials. (Elsevier, 2016), pp.543–559

    Chapter  Google Scholar 

  33. D.W. Schubert, Spin coating as a method for polymer molecular weight determination. Polym. Bull. 38, 177–184 (1997). https://doi.org/10.1007/s002890050035

    Article  Google Scholar 

  34. J.S. Park, S.H. Lee, T.H. Han, S.O. Kim, Hierarchically ordered polymer films by templated organization of aqueous droplets. Adv. Funct. Mater. 17, 2315–2320 (2007). https://doi.org/10.1002/adfm.200601141

    Article  Google Scholar 

  35. C.M. Knobler, D. Beysens, Growth of breath figures on fluid surfaces. Europhys. Lett. EPL 6, 707–712 (1988). https://doi.org/10.1209/0295-5075/6/8/007

    Article  ADS  Google Scholar 

  36. A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 39, 510–554 (2014). https://doi.org/10.1016/j.progpolymsci.2013.08.006

    Article  Google Scholar 

  37. E. Bormashenko, M. Frenkel, A. Vilk, I. Legchenkova, A. Fedorets, N. Aktaev, L. Dombrovsky, M. Nosonovsky, Characterization of self-assembled 2D patterns with voronoi entropy. Entropy 20, 956 (2018). https://doi.org/10.3390/e20120956

    Article  ADS  Google Scholar 

  38. C. Annic, J.P. Troadec, A. Gervois, J. Lemaître, M. Ammi, L. Oger, Experimental study of radical tesselations of assemblies of discs with size distribution. J. Phys. I(4), 115–125 (1994). https://doi.org/10.1051/jp1:1994124

    Article  Google Scholar 

  39. T. Young, III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805). https://doi.org/10.1098/rstl.1805.0005

    Article  ADS  Google Scholar 

  40. B.-B. Ke, L.-S. Wan, Y. Li, M.-Y. Xu, Z.-K. Xu, Selective layer-by-layer self-assembly on patterned porous films modulated by Cassie-Wenzel transition. Phys. Chem. Chem. Phys. 13, 4881–4887 (2011). https://doi.org/10.1039/C0CP01229G

    Article  Google Scholar 

  41. E. Bormashenko, Y. Bormashenko, G. Whyman, R. Pogreb, O. Stanevsky, Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie-Baxter wetting hypothesis. J. Colloid Interface Sci. 302, 308–311 (2006). https://doi.org/10.1016/j.jcis.2006.06.016

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Swathi P V acknowledges DST, Govt. of India for the Inspire Fellowship (IF190317). The authors acknowledge S G Ramkumar for giving the idea of spin-coating. The authors acknowledge Chandra Mouli P V S S R for the discussions on image analysis. The authors acknowledge Abdulkareem U for running the MD simulation of PS. The authors thank the Naval Research Board of India for the contact angle goniometer.

Author information

Authors and Affiliations

Authors

Contributions

VM conceived the original idea. SPV performed the experiments. Both the authors were involved equally in the analysis of the results and writing the manuscript.

Corresponding author

Correspondence to V. Madhurima.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swathi, P.V., Madhurima, V. Porous polymer film formation by water droplet templating using polystyrene. Eur. Phys. J. E 46, 25 (2023). https://doi.org/10.1140/epje/s10189-023-00282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00282-x

Navigation