Skip to main content
Log in

Enhanced dielectric and electrical performance of phosphonic acid-modified tantalum (Ta)-doped potassium sodium niobate (KNaNbO3)-P(VDF-HFP) composites

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

PA-KNNT-P(VDF-HFP) composite films were synthesized using facile solution casting technique. Due to their wide range of applications in dielectric and electrical systems, phosphonic acid (PA)-modified tantalum-doped potassium sodium niobate (KNNT)–polyvinylidene fluoride co-hexafluoropropylene P(VDF-HFP) composite films have piqued the interest of academic researchers. Microstructural analysis showed that PA layers incorporated onto the KNNT particles within the polymer matrix. The PA-KNNT-P(VDF-HFP) composite exhibited improved dielectric and electrical performance over a broad range of frequency, and the value of the dielectric constant of the P(VDF-HFP) composites is improved by ≈119 over the P(VDF-HFP) matrix at a filler loading 19 wt.%. Moreover, PA-KNNT-P(VDF-HFP) composite also reveals higher dielectric constant (≈ 119) and AC conductivity than P(VDF-HFP)-KNNT composites, while maintaining suppressed dielectric loss (\(\le 1.3\) at 102 Hz). It is also observed that the PA-KNNT-P(VDF-HFP) composite exhibited an insulator–conductor transition with a percolation threshold of fKNNT = 13.4 wt.%. As a result of their exceptional dielectric and electrical characteristics, PA-KNNT-P(VDF-HFP) composites have the potential to find exciting practical applications in a variety of electronic domains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This is hereby confirming to the journal that all relevant own data of the presented graphical analysis and those will be produced on reasonable request.

References

  1. A.A. Al-Muntaser, R.A. Pashameah, K. Sharma, E. Alzahrani, S.T. Hameed, M.A. Morsi, Boosting of structural, optical, and dielectric properties of PVA/CMC polymer blend using SrTiO3 perovskite nanoparticles for advanced optoelectronic applications. Opt. Mater. 132, 112799 (2022)

    Google Scholar 

  2. Y. Feng, P. Chen, B. Mao, M. Bo, Q. Deng, Well-coordinated dielectric properties in polymer composites bearing hybrid ceramic via interfacial effect between Ti2C MXene particles and large-aspect-ratio ZrO2 fibers. Colloids Surf. A 629, 127505 (2021)

    Google Scholar 

  3. X. Song, G. Fan, D. Liu, Z. Wei, Y. Liu, R. Fan, Bilayer dielectric composites with positive-ε and negative-ε layers achieving high dielectric constant and low dielectric loss. Compos. A Appl. Sci. Manuf. 160, 107071 (2022)

    Google Scholar 

  4. M. Yang, W. Ren, M. Guo, Y. Shen, High-energy-density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review. Small 18, 2205247 (2022)

    Google Scholar 

  5. D.K. Messer, J.H. Shin, M. Örnek, T.A. Hafner, M. Zhou, S.F. Son, Effects of flexoelectric and piezoelectric properties on the impact-driven ignition sensitivity of P (VDF-TrFE)/nAl films. Combust. Flame 242, 112181 (2022)

    Google Scholar 

  6. J. Chen, F. Huang, C. Zhang, F. Meng, L. Cao, H. Lin, Enhanced energy storage density in poly(vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@ MgO nanoparticals. J. Energy Storage 53, 105163 (2022)

    Google Scholar 

  7. X. Liu, M. Ji, J. Shao, Estimating the dielectric constant of BaTiO3–polymer nanocomposites by a developed Paletto model. RSC Adv. 11(42), 26056–26062 (2021)

    ADS  Google Scholar 

  8. J. Li, J. Jiang, Q. Cheng, Z. Cui, X. Liu, P. Zuo, Q. Zhuang, Construction of a flexible 1D core–shell Al2O3@ NaNbO3 nanowire/poly (p-phenylene benzobisoxazole) nanocomposite with stable and enhanced dielectric properties in an ultra-wide temperature range. J. Mater. Chem. C 10(2), 716–725 (2022)

    Google Scholar 

  9. R. Patra, D. Mohanty, P.K. Nayak, S.K. Satpathy, S.K. Parida, Studies on structural, dielectric, and electrical properties of the PMMA-BNT ceramics polymer composites. Polym. Sci., Ser. B 64(4), 539–545 (2022)

    Google Scholar 

  10. K. Silakaew, P. Thongbai, Continually enhanced dielectric constant of Poly(vinylidene fluoride) with BaTiO3@ Poly(vinylidene fluoride) core–shell nanostructure filling. Ceram. Int. 48(5), 7005–7012 (2022)

    Google Scholar 

  11. G. Zhang, Q. Li, E. Allahyarov, Y. Li, L. Zhu, Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl. Mater. Interfaces. 13(32), 37939–37960 (2021)

    Google Scholar 

  12. H. Yoon, P. Matteini, B. Hwang, Review on three-dimensional ceramic filler networking composites for thermal conductive applications. J. Non-Cryst. Solids 576, 121272 (2022)

    Google Scholar 

  13. W. Tuichai, A. Karaphun, C. Ruttanapun, Improved dielectric properties of PVDF polymer composites filled with Ag nanomaterial deposited reduced graphene oxide (rGO) hybrid particles. Mater. Res. Bull. 145, 111552 (2022)

    Google Scholar 

  14. L. Zhao, Z. Chen, J. Ren, L. Yang, Y. Li, Z. Wang et al., Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres. J. Colloid Interface Sci. 627, 205–214 (2022)

    ADS  Google Scholar 

  15. D. Yang, W. Zhang, Y. Wang, L. Li, F. Yao, L. Miao et al., Formation mechanisms and electrical properties of perovskite mesocrystals. Ceram. Int. 47(2), 1479–1512 (2021)

    Google Scholar 

  16. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Enhanced temperature stability in high piezoelectric performance of (K, Na) NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloy. Compd. 852, 156865 (2021)

    Google Scholar 

  17. C. Carbone, M. Benwadih, G. D’Ambrogio, M.Q. Le, J.F. Capsal, P.J. Cottinet, Influence of matrix and surfactant on piezoelectric and dielectric properties of screen-printed BaTiO3/PVDF composites. Polymers 13(13), 2166 (2021)

    Google Scholar 

  18. Y. Niu, K. Yu, Y. Bai, F. Xiang, H. Wang, Fluorocarboxylic acid-modified barium titanate/poly (vinylidene fluoride) composite with significantly enhanced breakdown strength and high energy density. RSC Adv. 5(79), 64596–64603 (2015)

    ADS  Google Scholar 

  19. K. Yu, Y. Niu, Y. Zhou, Y. Bai, H. Wang, Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J. Am. Ceram. Soc. 96(8), 2519–2524 (2013)

    Google Scholar 

  20. P. Hu, S. Gao, Y. Zhang, L. Zhang, C. Wang, Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite. Compos. Sci. Technol. 156, 109–116 (2018)

    Google Scholar 

  21. B. Luo, X. Wang, Q. Zhao, L. Li, Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos. Sci. Technol. 112, 1–7 (2015)

    ADS  Google Scholar 

  22. J. Su, J. Zhang, Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites. J. Mater. Sci. Mater. Electron. 30(3), 1957–1975 (2019)

    Google Scholar 

  23. S. Moharana, S. Sai, R.N. Mahaling, Enhanced dielectric and ferroelectric properties of surface hydroxylated Na0.5Bi0.5TiO3 (NBT)-poly (vinylidene fluoride) (PVDF) composites. J. Adv. Dielectr. 8(03), 1850017 (2018)

    ADS  Google Scholar 

  24. L. Zhang, S. Yuan, S. Chen, D. Wang, B.Z. Han, Z.M. Dang, Preparation and dielectric properties of core–shell structured Ag@ polydopamine/poly (vinylidene fluoride) composites. Compos. Sci. Technol. 110, 126–131 (2015)

    Google Scholar 

  25. K. Yu, Y. Niu, F. Xiang, Y. Zhou, Y. Bai, H. Wang, Enhanced electric breakdown strength and high energy density of barium titanate filled polymer nanocomposites. J. Appl. Phys. 114(17), 174107 (2013)

    ADS  Google Scholar 

  26. X. Chen, F. Liang, W. Lu, Z. Jin, Y. Zhao, M. Fu, High permittivity nanocomposites embedded with Ag/TiO2 core–shell nanoparticles modified by phosphonic acid. Polymers 10(6), 586 (2018)

    Google Scholar 

  27. F.A. He, K.H. Lam, J.T. Fan, L.W. Chan, Novel syndiotactic polystyrene/BaTiO3-graphite nanosheets three-phase composites with high dielectric permittivity. Polym. Test. 32(5), 927–931 (2013)

    Google Scholar 

  28. M.H. Khan, S. Pal, E. Bose, Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100–x) BaTiO3/(x) La0.7Ca0.3MnO3 composites. Appl. Phys. A 118(3), 907–912 (2015)

    ADS  Google Scholar 

  29. H. Du, C. Fang, J. Zhang, X. Xia, G.J. Weng, Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. Int. J. Eng. Sci. 173, 103650 (2022)

    MathSciNet  MATH  Google Scholar 

  30. L. Jena, D. Soren, P.K. Deheri, P. Pattojoshi, Low frequency dielectric response mechanism of bamboo charcoal. Fuller Nanotub Carbon Nanostruct. 30(6), 597–602 (2022)

    ADS  Google Scholar 

  31. E.M. Abdallah, T.F. Qahtan, E.M. Abdelrazek, G.M. Asnag, M.A. Morsi, Enhanced the structural, optical, electrical and magnetic properties of PEO/CMC blend filled with cupper nanoparticles for energy storage and magneto-optical devices. Opt. Mater. 134, 113092 (2022)

    Google Scholar 

  32. P. Norouzzadeh, K. Mabhouti, M.M. Golzan, R. Naderali, Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J. Mater. Sci. Mater. Electron. 31(10), 7335–7347 (2020)

    Google Scholar 

  33. Ş Altındal, M.U.R.A.T. Ulusoy, S.A.D.I.K. Özçelik, Y.A.S.H.A.R. Azizian-Kalandaragh, On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures. J. Mater. Sci. Mater. Electron. 32(15), 20071–20081 (2021)

    Google Scholar 

  34. A.M. Akbaş, A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. J. Mater. Sci. Mater. Electron. 32(6), 7657–7670 (2021)

    Google Scholar 

  35. J. Li, Z. Yang, X. Huang, Y. Zhao, X. Li, W. Wei et al., Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber. Appl. Surface Sci. 585, 152717 (2022)

    Google Scholar 

  36. A. Yu, Y. Zhu, W. Wang, J. Zhai, Progress in triboelectric materials: toward high performance and widespread applications. Adv. Func. Mater. 29(41), 1900098 (2019)

    Google Scholar 

  37. C. Bessaguet, E. Dantras, G. Michon, M. Chevalier, L. Laffont, C. Lacabanne, Electrical behavior of a graphene/PEKK and carbon black/PEKK nanocomposites in the vicinity of the percolation threshold. J. Non-Cryst. Solids 512, 1–6 (2019)

    ADS  Google Scholar 

  38. S. Bhattacharya, AC conductivity behaviour and charge carrier concentrations of some vanadate glassy system. Phys. Lett. A 384(16), 126324 (2020)

    Google Scholar 

  39. M. Javed, A.A. Khan, J. Kazmi, M.A. Mohamed, M.N. Khan, M. Hussain, R. Bilkees, Dielectric relaxation and small polaron hopping transport in sol-gel-derived NiCr2O4 spinel chromite. Mater. Res. Bull. 138, 111242 (2021)

    Google Scholar 

  40. R. Das, R.N.P. Choudhary, D. Pradhan, Structural and electrical characteristics of double perovskite: Sr2FeMoO6. Mater. Sci. Eng. B 281, 115715 (2022)

    Google Scholar 

  41. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite. J. Mater. Sci. Mater. Electron. 31(13), 10006–10017 (2020)

    Google Scholar 

  42. S. Hajra, S. Sahoo, R.N.P. Choudhary, Fabrication and electrical characterization of (Bi0.49Na0.49Ba0.02) TiO3-PVDF thin film composites. J. Polym. Res. 26(1), 1–11 (2019)

    Google Scholar 

  43. R. Das, R.N.P. Choudhary, Studies of electrical, magnetic and leakage-current characteristics of double perovskite: Dy2CoMnO6. J. Alloy. Compd. 853, 157240 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Centurion University of Technology and Management, Odisha, India, for carrying out the present research work.

Author information

Authors and Affiliations

Authors

Contributions

DT performed manuscript writing and experimental data investigations and analysis. SC done research supervision and mentorship, guidance of the project, as well as made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data. ASG contributed to external experimental analysis, draft checking. RNM has given experiments of data analysis and has been involved in drafting the manuscript. SM revised it critically for important intellectual content. AB was involved in conceptual thematic diagrams and graphical analysis. KP done thematic concept of the main research analysis and moderation of full length manuscript and experimental resources.

Corresponding authors

Correspondence to Subhendu Chakroborty, Srikanta Moharana or Kaushik Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

T.I. : Novel Molecular Materials and Devices from Functional Soft Matter. Guest editors: Jean-Marc Di Meglio, Aritra Ghosh, Orlando Guzmán, P. Lakshmi Praveen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, D., Chakroborty, S., Gadtya, A.S. et al. Enhanced dielectric and electrical performance of phosphonic acid-modified tantalum (Ta)-doped potassium sodium niobate (KNaNbO3)-P(VDF-HFP) composites. Eur. Phys. J. E 46, 21 (2023). https://doi.org/10.1140/epje/s10189-023-00279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00279-6

Navigation