Skip to main content
Log in

Measuring the average cell size and width of its distribution in cellular tissues using Fourier transform

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present an in-depth investigation of a fully automated Fourier-based analysis to determine the cell size and the width of its distribution in 3D biological tissues. The results are thoroughly tested using generated images, and we offer valuable criteria for image acquisition settings to optimize accuracy. We demonstrate that the most important parameter is the number of cells in the field of view, and we show that accurate measurements can already be made on volume only containing \(3\times 3\times 3\) cells. The resolution in z is also not so important, and a reduced number of in-depth images, of order of one per cell, already provides a measure of the mean cell size with less than 5% error. The technique thus appears to be a very promising tool for very fast live local volume cell measurement in 3D tissues in vivo while strongly limiting photobleaching and phototoxicity issues.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Zlotek-Zlotkiewicz, S. Monnier, G. Cappello, M. Le Berre, M. Piel, J. Cell Biol. 211(4), 765 (2015). https://doi.org/10.1083/jcb.201505056

    Article  Google Scholar 

  2. M. Guo, A.F. Pegoraro, A. Mao, E.H. Zhou, P.R. Arany, Y. Han, D.T. Burnette, M.H. Jensen, K.E. Kasza, J.R. Moore, F.C. Mackintosh, J.J. Fredberg, D.J. Mooney, J. Lippincott-Schwartz, D.A. Weitz, Proc. Natl. Acad. Sci. U.S.A. 114(41), E8618 (2017). https://doi.org/10.1073/pnas.1705179114

    Article  Google Scholar 

  3. E.K. Hoffmann, I.H. Lambert, S.F. Pedersen, Physiol. Rev. 89(1), 193 (2009). https://doi.org/10.1152/physrev.00037.2007

    Article  Google Scholar 

  4. N. Perez Gonzalez, J. Tao, N.D. Rochman, D. Vig, E. Chiu, D. Wirtz, S.X. Sun, Mol. Biol. Cell 29(21), 2591 (2018). https://doi.org/10.1091/mbc.E18-04-0213

    Article  Google Scholar 

  5. C. Cadart, E. Zlotek-Zlotkiewicz, L. Venkova, O. Thouvenin, V. Racine, M. Le Berre, S. Monnier, M. Piel, Methods Cell Biol. 139, 103 (2017). https://doi.org/10.1016/BS.MCB.2016.11.009

    Article  Google Scholar 

  6. A.K. Bryan, A. Engler, A. Gulati, S.R. Manalis, PLoS One 7(1), e29866 (2012). https://doi.org/10.1371/journal.pone.0029866

    Article  ADS  Google Scholar 

  7. F. Bosveld, I. Bonnet, B. Guirao, S. Tlili, Z. Wang, A. Petitalot, R. Marchand, P.L. Bardet, P. Marcq, F. Graner, Y. Bellaiche, Science 336(6082), 724 (2012). https://doi.org/10.1126/science.1221071

    Article  ADS  Google Scholar 

  8. P. Marmottant, A. Mgharbel, J. Käfer, B. Audren, J.P. Rieu, J.C. Vial, B. van der Sanden, A.F.M. Marée, F. Graner, H. Delanoë-Ayari, Proc. Natl. Acad. Sci. USA 106(41), 17271 (2009). https://doi.org/10.1073/pnas.0902085106

    Article  ADS  Google Scholar 

  9. M. Durande, S. Tlili, T. Homan, B. Guirao, F. Graner, H. Delanoë-Ayari, Phys. Rev. E 99(6), 062401 (2019). https://doi.org/10.1103/PhysRevE.99.062401

    Article  ADS  Google Scholar 

  10. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill Book Company, 1986). http://www.academia.edu/download/44001876/34957138.pdf

  11. E.C. Costa, A.F. Moreira, D. de Melo-Diogo, V.M. Gaspar, M.P. Carvalho, I.J. Correia, Biotechnol. Adv. 34(8), 1427 (2016). https://doi.org/10.1016/j.biotechadv.2016.11.002

  12. M.E. Dolega, S. Monnier, B. Brunel, J.F. Joanny, P. Recho, G. Cappello, Elife 10, 1 (2021). https://doi.org/10.7554/eLife.63258

    Article  Google Scholar 

  13. L. Moisan, J. Math. Imaging Vis. 39(2), 161 (2011). https://doi.org/10.1007/s10851-010-0227-1

    Article  MathSciNet  Google Scholar 

  14. M. Frigo, S.G. Johnson, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, vol. 3 (IEEE, 1998), pp. 1381–1384. https://doi.org/10.1109/ICASSP.1998.681704

  15. D.J. Kinning, E.L. Thomas, Macromolecules 2(5), 1712 (1984). https://doi.org/10.1021/ma00139a013

    Article  ADS  Google Scholar 

  16. N.W. Ashcroft, N.H. March, Proc. R. Soc. Lond., Ser. A. Math. Phys. Sci. 297(1450), 336 (1967)

    ADS  Google Scholar 

  17. J.S. Pedersen, Adv. Colloid Interface Sci. 70(1–3), 171 (1997). https://doi.org/10.1016/S0001-8686(97)00312-6

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the Labex Imust (Université Lyon). We thank C. Moulin from centre NanOpTec (Université Lyon) for help on two-photon data acquisition. S. M. and H. D.-A. designed the experiment. T. H., S. M. and C. J. performed the experiments. T. H., S. M. and H. D.-A. analyzed the data. A. N. and H. D.-A. interpreted the data. T. H., A. N. and H. D.-A. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Delanoë-Ayari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homan, T., Monnier, S., Jebane, C. et al. Measuring the average cell size and width of its distribution in cellular tissues using Fourier transform. Eur. Phys. J. E 45, 44 (2022). https://doi.org/10.1140/epje/s10189-022-00198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00198-y

Navigation