Skip to main content
Log in

Open-source platform for block polymer formulation design using particle swarm optimization

  • Tips and Tricks - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Facile exploration of large design spaces is critical to the development of new functional soft materials, including self-assembling block polymers, and computational inverse design methodologies are a promising route to initialize this task. We present here an open-source software package coupling particle swarm optimization (PSO) with an existing open-source self-consistent field theory (SCFT) software for the inverse design of self-assembling block polymers to target bulk morphologies. To lower the barrier to use of the software and facilitate exploration of novel design spaces, the underlying SCFT calculations are seeded with algorithmically generated initial fields for four typical morphologies: lamellae, network phases, cylindrical phases, and spherical phases. In addition to its utility within PSO, the initial guess tool also finds generic applicability for stand-alone SCFT calculations. The robustness of the software is demonstrated with two searches for classical phases in the conformationally symmetric diblock system, as well as one search for the Frank–Kasper \(\sigma \) phase in conformationally asymmetric diblocks. The source code for both the initial guess generation and the PSO wrapper is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The data available at https://hdl.handle.net/11299/224394 (for the pscfFieldGen software package) and https://hdl.handle.net/11299/224395 (for the pscfInverse software package).]

References

  1. C.M. Bates, F.S. Bates, Macromolecules 50(1), 3 (2017)

    Article  ADS  Google Scholar 

  2. L. Leibler, Macromolecules 13(6), 1602 (1980)

    Article  ADS  Google Scholar 

  3. D.A. Hajduk, P.E. Harper, S.M. Gruner, C.C. Honeker, G. Kim, E.L. Thomas, L.J. Fetters, Macromolecules 27(15), 4063 (1994)

    Article  ADS  Google Scholar 

  4. M.W. Matsen, M. Schick, Phys. Rev. Lett. 72(16), 2660 (1994)

    Article  ADS  Google Scholar 

  5. C.A. Tyler, D.C. Morse, Phys. Rev. Lett. 94(20), 208302 (2005)

    Article  ADS  Google Scholar 

  6. M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Shimizu, M.I. Kim, H. Hasegawa, Macromolecules 40(13), 4399 (2007)

    Article  ADS  Google Scholar 

  7. S. Lee, M.J. Bluemle, F.S. Bates, Science 330, 349 (2010)

    Article  ADS  Google Scholar 

  8. N. Xie, W. Li, F. Qiu, A.C. Shi, ACS Macro Lett. 3(9), 906 (2014)

    Article  Google Scholar 

  9. G.M. Grason, B.A. DiDonna, R.D. Kamien, Phys. Rev. Lett. 91(5), 1 (2003)

    Article  Google Scholar 

  10. G.M. Grason, Phys. Rep. 433(1), 1 (2006)

    Article  ADS  Google Scholar 

  11. M.W. Bates, J. Lequieu, S.M. Barbon, R.M. Lewis, K.T. Delaney, A. Anastasaki, C.J. Hawker, G.H. Fredrickson, C.M. Bates, Proc. Natl. Acad. Sci. USA 116(27), 13194 (2019)

    Article  ADS  Google Scholar 

  12. K. Kim, M.W. Schulze, A. Arora, R.M. Lewis, M.A. Hillmyer, K.D. Dorfman, F.S. Bates, Science 356(6337), 520 (2017)

    Article  ADS  Google Scholar 

  13. S. Jeon, T. Jun, S. Jo, H. Ahn, S. Lee, B. Lee, D.Y. Ryu, Macromol. Rapid Commun. 40(19), 1900259 (2019)

    Article  Google Scholar 

  14. F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, G.H. Fredrickson, Science 336(6080), 434 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Xie, M. Liu, H. Deng, W. Li, F. Qiu, A.C. Shi, J. Am. Chem. Soc. 136(8), 2974 (2014)

    Article  Google Scholar 

  16. S. Chanpuriya, K. Kim, J. Zhang, S. Lee, A. Arora, K.D. Dorfman, K.T. Delaney, G.H. Fredrickson, F.S. Bates, ACS Nano 10(5), 4961 (2016)

    Article  Google Scholar 

  17. Y. Miyamori, J. Suzuki, A. Takano, Y. Matsushita, ACS Macro Lett. 9(1), 32 (2020)

    Article  Google Scholar 

  18. M. Liu, Y. Qiang, W. Li, F. Qiu, A.C. Shi, ACS Macro Lett. 5(10), 1167 (2016)

    Article  Google Scholar 

  19. M. Kaga, T. Ohta, J. Phys. Soc. Japan 75, 043002 (2006)

    Article  ADS  Google Scholar 

  20. D. Liu, Y.Y. Wang, Y.C. Sun, Y.Y. Han, J. Cui, W. Jiang, Chin. J. Polym. Sci. 36, 888 (2018)

    Article  Google Scholar 

  21. A. Takano, K. Soga, J. Suzuki, Y. Matsushita, Macromolecules 36(25), 9288 (2003)

    Article  ADS  Google Scholar 

  22. Q. Xie, Y. Qiang, G. Zhang, W. Li, Macromolecules 53(17), 7380 (2020)

    Article  ADS  Google Scholar 

  23. G. Polymeropoulos, G. Zapsas, K. Ntetsikas, P. Bilalis, Y. Gnanou, N. Hadjichristidis, Macromolecules 50(4), 1253 (2017)

    Article  ADS  Google Scholar 

  24. Y. Gao, H. Deng, W. Li, F. Qiu, A.C. Shi, Phys. Rev. Lett. 116(6), 068304 (2016)

    Article  ADS  Google Scholar 

  25. K. Orfanou, H. Iatrou, D.J. Lohse, N. Hadjichristidis, Macromolecules 39(13), 4361 (2006)

    Article  ADS  Google Scholar 

  26. Y. Xu, W. Li, F. Qiu, Z. Lin, Nanoscale 6(12), 6844 (2014)

    Article  ADS  Google Scholar 

  27. M. Zhao, W. Li, Macromolecules 52(4), 1832 (2019)

    Article  ADS  Google Scholar 

  28. B. Zhao, W. Jiang, L. Chen, W. Li, F. Qiu, A.C. Shi, ACS Macro Lett. 7(1), 95 (2018)

    Article  Google Scholar 

  29. S.T. Milner, Macromolecules 27(8), 2333 (1994)

    Article  ADS  Google Scholar 

  30. A.B. Chang, C.M. Bates, B. Lee, C.M. Garland, S.C. Jones, R.K.W. Spencer, M.W. Matsen, R.H. Grubbs, Proc. Natl. Acad. Sci. USA 114(25), 6462 (2017)

    Article  Google Scholar 

  31. A.P. Lindsay, R.M. Lewis, B. Lee, A.J. Peterson, T.P. Lodge, F.S. Bates, ACS Macro Lett. 9(2), 197 (2020)

    Article  Google Scholar 

  32. A.P. Lindsay, G.K. Cheong, A.J. Peterson, S. Weigand, K.D. Dorfman, T.P. Lodge, F.S. Bates, Macromolecules 54(15), 7088 (2021)

    Article  ADS  Google Scholar 

  33. Z.M. Sherman, M.P. Howard, B.A. Lindquist, R.B. Jadrich, T.M. Truskett, J. Phys. Chem. 152, 140902 (2020)

    Article  Google Scholar 

  34. K.R. Gadelrab, A.F. Hannon, C.A. Ross, A. Alexander-Katz, Mol. Syst. Des. Eng. 2, 539 (2017)

    Article  Google Scholar 

  35. M.Z. Miskin, G. Khaira, J.J. de Pablo, H.M. Jaeger, Proc. Natl. Acad. Sci. USA 113(1), 34 (2016)

    Article  ADS  Google Scholar 

  36. D. Xu, H. Liu, Y.L. Zhu, Z.Y. Lu, Nanoscale 8, 5235 (2016)

    Article  ADS  Google Scholar 

  37. R. Zhang, L. Zhang, J. Lin, S. Lin, Phys. Chem. Chem. Phys. 21, 7781 (2019)

    Article  Google Scholar 

  38. A.F. Hannon, K.W. Gotrik, C.A. Ross, A. Alexander-Katz, ACS Macro Lett. 2(3), 251 (2013)

    Article  Google Scholar 

  39. A.F. Hannon, Y. Ding, W. Bai, C.A. Ross, A. Alexander-Katz, Nano Lett. 14(1), 318 (2014)

    Article  ADS  Google Scholar 

  40. J. Qin, G.S. Khaira, Y. Su, G.P. Garner, M. Miskin, H.M. Jaeger, J.J. de Pablo, Soft Matter 9(48), 11467 (2013)

    Article  ADS  Google Scholar 

  41. G.S. Khaira, J. Qin, G.P. Garner, S. Xiong, L. Wan, R. Ruiz, H.M. Jaeger, P.F. Nealey, J.J. de Pablo, ACS Macro Lett. 3(8), 747 (2014)

    Article  Google Scholar 

  42. H.M. Jaeger, J.J. de Pablo, APL Materials 4(5), 053209 (2016)

    Article  ADS  Google Scholar 

  43. M.W. Matsen, J. Phys. Condens. Matter 14(2), R21 (2002)

    Article  ADS  Google Scholar 

  44. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  45. A.C. Shi, Adv. Theory Simulat. (2019), p. 1800188

  46. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 - International Conference on Neural Networks (IEEE, 1995), Vol. 4, pp. 1942–1948

  47. R. Eberhart, in James Kennedy, A New Optimizer Using Particle Swarm Theory. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan, 1995), pp. 39–43

  48. Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 82, 094116 (2010)

    Article  ADS  Google Scholar 

  49. P.L. Fernández-Cabán, F.J. Masters, Comput. Struct. 202, 1 (2018)

    Article  Google Scholar 

  50. L. Li, Z. Huang, F. Liu, Q. Wu, Comput. Struct. 85(7–8), 340 (2007)

    Article  Google Scholar 

  51. S. Pandey, L. Wu, S.M. Guru, R. Buyya, A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments, in 2010 24th IEEE International Conference on Advanced Information Networking and Applications (IEEE, 2010), pp. 400–407

  52. J. Pugh, A. Martinoli, Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization, in 2007 IEEE Swarm Intelligence Symposium (IEEE, 2007), Sis, pp. 332–339

  53. S.P. Paradiso, K.T. Delaney, G.H. Fredrickson, ACS Macro Lett. 5(8), 972 (2016)

    Article  Google Scholar 

  54. M.R. Khadilkar, S.P. Paradiso, K.T. Delaney, G.H. Fredrickson, Macromolecules 50(17), 6702 (2017)

    Article  ADS  Google Scholar 

  55. https://pscf.cems.umn.edu

  56. A. Arora, J. Qin, D.C. Morse, K.T. Delaney, G.H. Fredrickson, F.S. Bates, K.D. Dorfman, Macromolecules 49(13), 4675 (2016)

    Article  ADS  Google Scholar 

  57. D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007 (2007), pp. 120–127

  58. M. Clerc, J. Kennedy, IEEE Trans. Evolut. Comput. 6(1), 58 (2002)

    Article  Google Scholar 

  59. R.B. Thompson, K. Rasmussen, T. Lookman, J. Chem. Phys. 120(1), 31 (2004)

    Article  ADS  Google Scholar 

  60. M.W. Matsen, Eur. Phys. J. E 30(4), 361 (2009)

    Article  Google Scholar 

  61. P. Stasiak, M.W. Matsen, Eur. Phys. J. E 34(10), 110 (2011)

    Article  Google Scholar 

  62. D.G. Anderson, J. Assoc. Comput. Mach. 12(4), 547 (1965)

    Article  MathSciNet  Google Scholar 

  63. A. Arora, F.S. Bates, D.C. Morse, K.D. Dorfman, J. Phys. Chem. 146, 244902 (2017)

    Article  Google Scholar 

  64. C.A. Tyler, D.C. Morse, Macromolecules 36(21), 8184 (2003)

    Article  ADS  Google Scholar 

  65. E.W. Cochran, Ph.D. thesis, University of Minnesota (2004)

  66. M. Wohlgemuth, N. Yufa, J. Hoffman, E.L. Thomas, Macromolecules 34(17), 6083 (2001)

    Article  ADS  Google Scholar 

  67. W. Xu, K. Jiang, P. Zhang, A.C. Shi, J. Phys. Chem. B 117(17), 5296 (2013)

    Article  Google Scholar 

  68. E. Helfand, Y. Tagami, J. Chem. Phys. 56(7), 3592 (1972)

    Article  ADS  Google Scholar 

  69. C.A. Tyler, J. Qin, F.S. Bates, D.C. Morse, Macromolecules 40(13), 4654 (2007)

    Article  ADS  Google Scholar 

  70. G.K. Cheong, A. Chawla, D.C. Morse, K.D. Dorfman, Eur. Phys. J. E 43(2), 15 (2020)

    Article  Google Scholar 

  71. F. Drolet, G.H. Fredrickson, Phys. Rev. Lett. 83(21), 4317 (1999)

    Article  ADS  Google Scholar 

  72. Y. Bohbot-Raviv, Z.G. Wang, Phys. Rev. Lett. 85(16), 3428 (2000)

    Article  ADS  Google Scholar 

  73. Z. Guo, G. Zhang, F. Qiu, H. Zhang, Y. Yang, A.C. Shi, Phys. Rev. Lett. 101(2), 028301 (2008)

    Article  ADS  Google Scholar 

  74. C.L. Tsai, K.T. Delaney, G.H. Fredrickson, Macromolecules 49(17), 6558 (2016)

    Article  ADS  Google Scholar 

  75. K.T. Delaney, G.H. Fredrickson, Comput. Phys. Commun. 184(9), 2102 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DMREF Program of the National Science Foundation under awards DMR-1725272 at the University of Minnesota and DMR-1725414 at the University of California, Santa Barbara. Computational resources were provided by the Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Contributions

L.J.C. and K.D.D. designed the research; L.J.C. wrote the initial guess generation code; L.J.C. wrote the PSO code based partially on sample code provided by K.T.D. and G.H.F.; K.D.D. and F.S.B. supervised the research; L.J.C. analyzed the results; L.J.C. and K.D.D. wrote the manuscript with input from K.T.D., G.H.F., and F.S.B.

Corresponding author

Correspondence to Kevin D. Dorfman.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 330 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Case, L.J., Delaney, K.T., Fredrickson, G.H. et al. Open-source platform for block polymer formulation design using particle swarm optimization. Eur. Phys. J. E 44, 115 (2021). https://doi.org/10.1140/epje/s10189-021-00123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00123-9

Navigation