Skip to main content
Log in

Behavior of chiral active nematics confined to nanoscopic circular region

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We performed molecular dynamic simulations of a model active nematic confined to a two-dimensional nanoscopic circular region under both tangential and radial anchoring boundary conditions. This active material is assumed to be composed of elongated chiral particles which interact with each other by means of isotropic Lennard–Jones and anisotropic Maier–Saupe-like potentials. These particles have the lateral appendage emitting a jet of some substance generated by a certain internal chemical reaction. As a result, such elongated particles are exposed to both the reactive self-propelled force and the torque that provide an additional translational movement of particles and a self-rotation with respect to their geometric centers. It has been found that the chiral active nematics under consideration form time-dependent vortex-like structures with two +1/2 topological defects which are similar to experimentally observed structures in active materials

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  2. C. Bechinger, R. Di Leonardo, H. Lowen, C. Rechhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

  3. A. Doostmohammadi, J.N. Ignes-Mullol, J.M. Yeomans, F. Sagues, Nat. Commun. 9, 3246 (2018)

    Article  ADS  Google Scholar 

  4. M.M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, M.F. Hagan, Phys. Rev. E 97, 012702 (2018)

    Article  ADS  Google Scholar 

  5. S.P. Thampi, A. Doostmohammadi, T.N. Shendruk, R. Golestanian, J.M. Yeomans, Sci. Adv. 2, e1501854 (2016)

    Article  ADS  Google Scholar 

  6. D. Needleman, Z. Dogic, Nat. Rev. Mater. 2, 17048 (2017)

    Article  ADS  Google Scholar 

  7. N.H.P. Nguyen, D. Klotsa, M. Engel, S.C. Glotzer, Phys. Rev. Lett. 112, 075701 (2014)

    Article  ADS  Google Scholar 

  8. Q. Chen, B.-q. Ai, J. Chem. Phys. 143, 4751 (2015)

  9. B.-q. Ai, Sci. Rep. 6, 18740 (2016)

  10. Z. Shen, A. Wurger, J.S. Lintuvuori, Soft Matter 15, 1508 (2019)

    Article  ADS  Google Scholar 

  11. X. Yang, C. Ren, K. Cheng, H.P. Zhang, Phys. Rev. E 101, 022603 (2020)

  12. S. van Teeffelen, H. Lowen, Phys. Rev. E 78, 020101 (R) (2008)

  13. C. Weber, I.M. Sokolov, L. Schimansky-Geier, Phys. Rev. E 85, 052101 (2012)

  14. M. Mijalkov, G. Volpe, Soft Matter 9, 6376 (2013)

    Article  ADS  Google Scholar 

  15. C. Rechhardt, C.J. Olson Rechhardt, Phys. Rev. E 88, 042306 (2013)

  16. B. Liebchen, M.E. Cafes, D. Marenduzzo, Soft Matter 12, 7259 (2016)

    Article  ADS  Google Scholar 

  17. S. Won, S. Kim, J.E. Park, J. Jeon, J.J. Wol, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  18. C. Rechhardt, C.J. Olson Rechhardt, Phys. Rev. E 100, 012604 (2019)

  19. A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Nat. Commun. 7, 10557 (2016)

    Article  ADS  Google Scholar 

  20. D. Marenduzzo, E. Orlandini, M.E. Gates, J.M. Yeomans, Phys. Rev. Lett. 98, 118102 (2007)

  21. D. Marenduzzo, E. Orlandini, M.E. Gates, J.M. Yeomans, Phys. Rev. E 76, 031921 (2007)

  22. I. Giomi, M.J. Bowick, X. Ma, M.C. Marchetti, Phys. Rev. Lett. 110, 228101 (2013)

  23. S.P. Thampi, R. Golestanian, J.M. Yeomans, Phys. Rev. Lett. 111, 118101 (2013)

  24. J. Prost, F. Julicher, J.F. Joanny, Nat. Phys. 11, 111 (2015)

    Article  Google Scholar 

  25. E.J. Hemingway, P. Mishra, M.C. Marchetti, S.M. Fielding, Soft Matter 12, 7943 (2016)

    Article  ADS  Google Scholar 

  26. M.M. Norton, P. Grover, M.F. Hagan, S. Fraden, Phys. Rev. Lett. 125, 178005 (2020)

  27. A. Maitra, M. Lenz, Nat. Commun. 10, 920 (2019)

    Article  ADS  Google Scholar 

  28. L. Metselar, A. Doostmohammadi, J.M. Yeomans, J. Chem. Phys. 150, 064909 (2019)

  29. M.S.S. Pereira, A.A. Canabarro, I.N. de Oliveira, M.L. Lyra, L.V. Mirantsev, Eur. Phys. J. E 31, 81 (2010)

    Article  Google Scholar 

  30. E.J.L. de Oliveira, I.N. de Oliveira, M.L. Lyra, L.V. Mirantsev, Phys. Rev. E 93, 012703 (2016)

  31. L.V. Mirantsev, E.J.L. de Oliveira, I.N. de Oliveira, M.L. Lyra, Cryst. Rev. 4, 35 (2016)

    Article  Google Scholar 

  32. L.V. Mirantsev, A.M. Sonnet, E. Virga, Phys. Rev. E 98, 012701 (2018)

  33. M.P. Allen, D.J. Tildesly, Computer Simulations of Liquids (Clarendon Press, Oxford, 1989)

    Book  Google Scholar 

  34. S.J. DeCamp, G.S. Redner, A. Baskaran, M.F. Hagan, Z. Dogic, Nat. Mater. 14, 1110 (2015)

    Article  ADS  Google Scholar 

  35. G. Henkin, S.J. DeCamp, D.T.N. Chen, T. Sanchez, Z. Dogic, Philos. Trans. R. Soc. A 372, 20140142 (2014)

    Article  ADS  Google Scholar 

  36. T. Sanchez, D.T.N. Chen, S.J. Decamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)

    Article  ADS  Google Scholar 

  37. T. Sanchez, D. Welch, D. Nicastro, Z. Dogic, Science 333, 456 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially performed during my visit to Dipartimento di Matematica, Universita degli Studi a Pavia, Italy (October–November 2018) which was supported by the grant of the Italian Institute for Advanced Mathematics (INdAM). Author Contribution Statement: The paper was completely made by L. V. Mirantsev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Mirantsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirantsev, L.V. Behavior of chiral active nematics confined to nanoscopic circular region. Eur. Phys. J. E 44, 112 (2021). https://doi.org/10.1140/epje/s10189-021-00120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00120-y

Navigation