Skip to main content
Log in

Role of suction pressure in the stability of a gravity-driven thermoviscous liquid film flow down the interior surface of a cylinder

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This study aims to analyze the stability of a gravity-driven thin film flow in the heated/cooled interior surface of a vertical hollow cylinder. The model development involves simplifying the flow and energy equations using the usual thin-film approximation, where the average film thickness is considered to be much smaller than the radius of cylinder. A dispersion relation is then derived to study the temporal stability of the system in order to quantify the effect of various non-dimensional parameters present in the model, such as the thermoviscous number, Marangoni number, Biot number, and Bond number. Another non-dimensional parameter is introduced by considering an opposing suction pressure in the annulus region. The thermocapillary stress and the thermoviscous effect are shown to strongly affect the temporal stability of the flow. It is shown that although the suction pressure affects the velocity profile of the flow, it does not affect the temporal stability results. The suction pressure is then shown to have some effect on the spatiotemporal stability. Critical condition is presented for the transition between absolutely and convectively unstable systems, and parameter regimes are presented to quantify the effect of the above-mentioned parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Camassa, H.R. Ogrosky, J. Olander, Viscous film flow coating the interior of a vertical tube part 1 gravity-driven flow. J. Fluid Mech. 745, 682–715 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Camassa, H.R. Ogrosky, J. Olander, Viscous film flow coating the interior of a vertical tube. part 2. air-driven flow. J. Fluid Mech. 825, 1056–1090 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.R. Wazzan, T. Okamura, A. Smith, The stability of water flow over heated and cooled flat plates. J. Heat Transfer 90(1), 109–114 (1968)

    Article  Google Scholar 

  4. C.-C. Hwang, C.-I. Weng, Non-linear stability analysis of film flow down a heated or cooled inclined plane with viscosity variation. Int. J. Heat Mass Transfer 31(9), 1775–1784 (1988)

    Article  Google Scholar 

  5. G.A. Leslie, S. Wilson, B. Duffy, Thermoviscous coating and rimming flow. Q. J. Mech. Appl. Math. 65(4), 483–511 (2012)

    Article  MathSciNet  Google Scholar 

  6. T.C. Kumawat, N. Tiwari, Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: heating and cooling effects. Phys. Fluids 30(3), 032103 (2018)

    Article  ADS  Google Scholar 

  7. L. Dávalos-Orozco, X. You, Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder. Phys. Fluids 12(9), 2198–2209 (2000)

    Article  ADS  Google Scholar 

  8. R. Liu, Z. Ding, Stability of viscous film flow coating the interior of a vertical tube with a porous wall. Phys. Rev. E 95(5), 053101 (2017)

    Article  ADS  Google Scholar 

  9. Z. Ding, T.N. Wong, Three-dimensional dynamics of thin liquid films on vertical cylinders with marangoni effect. Phys. Fluids 29(1), 011701 (2017)

    Article  ADS  Google Scholar 

  10. I. Kliakhandler, S.H. Davis, S. Bankoff, Viscous beads on vertical fibre. J. Fluid Mech. 429, 381–390 (2001)

    Article  ADS  Google Scholar 

  11. A. Frenkel, Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. EPL (Europhysics Letters) 18(7), 583 (1992)

    Article  ADS  Google Scholar 

  12. S. Kalliadasis, H.-C. Chang, Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135–168 (1994)

    Article  ADS  Google Scholar 

  13. R. Craster, O. Matar, On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553, 85–105 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné, Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98(24), 244502 (2007)

    Article  ADS  Google Scholar 

  15. Z. Ding, R. Liu, T.N. Wong, C. Yang, Absolute instability induced by marangoni effect in thin liquid film flows on vertical cylindrical surfaces. Chem. Eng. Sci. 177, 261–269 (2018)

    Article  Google Scholar 

  16. G.F. Dietze, G. Lavalle, C. Ruyer-Quil, Falling liquid films in narrow tubes: occlusion scenarios. J. Fluid Mech. 894, A17 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Wilson, B. Duffy, Strong temperature-dependent-viscosity effects on a rivulet draining down a uniformly heated or cooled slowly varying substrate. Phys. Fluids 15(4), 827–840 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. G.A. Leslie, S. Wilson, B. Duffy, Non-isothermal flow of a thin film of fluid with temperature-dependent viscosity on a stationary horizontal cylinder. Phys. Fluids 23, 062101 (2011)

    Article  ADS  Google Scholar 

  19. S. Khanum, N. Tiwari, Gravity-driven thermoviscous liquid film down a heated or cooled vertical cylinder. Phys. Rev. Fluids 5(9), 094005 (2020)

    Article  ADS  Google Scholar 

  20. N. Tiwari, J.M. Davis, Nonmodal and nonlinear dynamics of a volatile liquid film flowing over a locally heated surface. Phys. Fluids 21(10), 102101 (2009)

    Article  ADS  Google Scholar 

  21. C. Bielarz, S. Kalliadasis, Time-dependent free-surface thin film flows over topography. Phys. Fluids 15(9), 2512–2524 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. H.-C. Chang, E.A. Demekhin, S.S. Saprikin, Noise-driven wave transitions on a vertically falling film. J. Fluid Mech. 462, 255–283 (2002)

    Article  ADS  Google Scholar 

  23. P. Huerre, P.A. Monkewitz, Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22(1), 473–537 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.J. Briggs, Electron-Stream Interaction with Plasmas (MIT Press, Cambridge, Mass, 1964)

    Book  Google Scholar 

  25. I. Delbende, J.-M. Chomaz, Nonlinear convective/absolute instabilities in parallel two-dimensional wakes. Phys. Fluids 10(11), 2724–2736 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. I. Abdelraziq, T. Nierat, Rheology properties of castor oil: temperature and shear rate-dependence of castor oil shear stress. J. Mater. Sci. Eng. 5(1), 1000220 (2015)

    Google Scholar 

  27. A. Leber, C. Dong, R. Chandran, T.D. Gupta, N. Bartolomei, F. Sorin, Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3, 316–326 (2020)

    Article  Google Scholar 

  28. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data 41(3), 033101–1 (2012)

    Article  ADS  Google Scholar 

  29. S.C. Hardy, The surface tension of liquid gallium. J. Cryst. Growth 71(3), 602–606 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Naveen Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishal, D., Tiwari, N. Role of suction pressure in the stability of a gravity-driven thermoviscous liquid film flow down the interior surface of a cylinder. Eur. Phys. J. E 44, 100 (2021). https://doi.org/10.1140/epje/s10189-021-00103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00103-z

Navigation