Skip to main content
Log in

Shear modulus and reversible particle trajectories of frictional granular materials under oscillatory shear

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this study, we numerically investigated the mechanical responses and trajectories of frictional granular particles under oscillatory shear in the reversible phase where particle trajectories form closed loops below the yielding point. When the friction coefficient is small, the storage modulus exhibits softening, and the loss modulus remains finite in the quasi-static limit. As the friction coefficient increases, the softening and residual loss modulus are suppressed. The storage and loss moduli satisfy scaling laws if they are plotted as functions of the areas of the loop trajectories divided by the strain amplitude and diameter of grains, at least for small values of the areas.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We have also checked that particles in the reversible phase exhibit almost the same trajectories for ten cycles in all samples.

References

  1. M. van Hecke, J. Phys. Condens. Matter 22, 033101 (2009)

    Article  Google Scholar 

  2. R.P. Behringer, B. Chakraborty, Rep. Prog. Phys. 82, 012601 (2019)

    Article  ADS  Google Scholar 

  3. C.S. O’Hern, S.A. Langer, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 88, 075507 (2002)

    Article  ADS  Google Scholar 

  4. B.P. Tighe, Phys. Rev. Lett. 107, 158303 (2011)

    Article  ADS  Google Scholar 

  5. M. Otsuki, H. Hayakawa, Phys. Rev. E 95, 062902 (2017)

    Article  ADS  Google Scholar 

  6. C. Coulais, A. Seguin, O. Dauchot, Phys. Rev. Lett. 113, 198001 (2014)

    Article  ADS  Google Scholar 

  7. M. Otsuki, H. Hayakawa, Phys. Rev. E 90, 042202 (2014)

    Article  ADS  Google Scholar 

  8. K.H. Nagamanasa, S. Gokhale, A.K. Sood, R. Ganapathy, Phys. Rev. E 89, 062308 (2014)

    Article  ADS  Google Scholar 

  9. E.D. Knowlton, D.J. Pine, L. Cipelletti, Soft Matter 10, 6931 (2014)

    Article  ADS  Google Scholar 

  10. T. Kawasaki, L. Berthier, Phys. Rev. E 94, 022615 (2016)

    Article  ADS  Google Scholar 

  11. P. Leishangthem, A.D.S. Parmar, S. Sastry, Nat. Commun. 8, 14653 (2017)

    Article  ADS  Google Scholar 

  12. A.H. Clark, J.D. Thompson, M.D. Shattuck, N.T. Ouellette, C.S. O’Hern, Phys. Rev. E 97, 062901 (2018)

    Article  ADS  Google Scholar 

  13. J. Boschan, S. Luding, B.P. Tighe, Granul. Matter 21, 58 (2019)

    Article  Google Scholar 

  14. J. Boschan, D. Vågberg, E. Somfai, B.P. Tighe, Soft Matter 12, 5450 (2016)

    Article  ADS  Google Scholar 

  15. D. Nakayama, H. Yoshino, F. Zamponi, J. Stat. Mech. 2016, 104001 (2016)

    Article  Google Scholar 

  16. T. Kawasaki, K. Miyazaki, arXiv:2003.10716 (2020)

  17. S. Dagois-Bohy, E. Somfai, B.P. Tighe, M. van Hecke, Soft Matter 13, 9036 (2017)

    Article  ADS  Google Scholar 

  18. M. Otsuki, H. Hayakawa, arXiv:2101.07473 (2021)

  19. M. Lundberg, K. Krishan, N. Xu, C.S. O’Hern, M. Dennin, Phys. Rev. E 77, 041505 (2008)

    Article  ADS  Google Scholar 

  20. C.F. Schreck, R.S. Hoy, M.D. Shattuck, C.S. O’Hern, Phys. Rev. E 88, 052205 (2013)

    Article  ADS  Google Scholar 

  21. N.C. Keim, P.E. Arratia, Soft Matter 9, 6222 (2013)

    Article  ADS  Google Scholar 

  22. N.C. Keim, P.E. Arratia, Phys. Rev. Lett. 112, 028302 (2014)

    Article  ADS  Google Scholar 

  23. I. Regev, T. Lookman, C. Reichhardt, Phys. Rev. E 88, 062401 (2013)

    Article  ADS  Google Scholar 

  24. I. Regev, J. Weber, C. Reichhardt, K.A. Dahmen, T. Lookman, Nat. Commun. 6, 8805 (2015)

    Article  ADS  Google Scholar 

  25. N.V. Priezjev, Phys. Rev. E 93, 013001 (2016)

    Article  ADS  Google Scholar 

  26. M.O. Lavrentovich, A.J. Liu, S.R. Nagel, Phys. Rev. E 96, 020101(R) (2017)

    Article  ADS  Google Scholar 

  27. K. Nagasawa, K. Miyazaki, T. Kawasaki, Soft Matter 15, 7557 (2019)

    Article  ADS  Google Scholar 

  28. P. Das, H.A. Vinutha, S. Sastry, Proc. Natl. Acad. Sci. USA 117, 10203 (2020)

    Article  Google Scholar 

  29. M. Otsuki, H. Hayakawa, Phys. Rev. E 83, 051301 (2011)

    Article  ADS  Google Scholar 

  30. S. Chialvo, J. Sun, S. Sundaresan, Phys. Rev. E 85, 021305 (2012)

    Article  ADS  Google Scholar 

  31. E. Brown, H.M. Jaeger, Phys. Rev. Lett. 103, 086001 (2009)

    Article  ADS  Google Scholar 

  32. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Phys. Rev. Lett. 111, 218301 (2013)

    Article  ADS  Google Scholar 

  33. N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mosquet, H. Lombois-Burger, J. Cayer-Barrioz, H.J. Herrmann, N.D. Spencer, L. Isa, Phys. Rev. Lett. 111, 108301 (2013)

    Article  ADS  Google Scholar 

  34. C. Heussinger, Phys. Rev. E 88, 050201 (2013)

    Article  ADS  Google Scholar 

  35. M.M. Bandi, M.K. Rivera, F. Krzakala, R.E. Ecke, Phys. Rev. E 87, 042205 (2013)

    Article  ADS  Google Scholar 

  36. M.P. Ciamarra, R. Pastore, M. Nicodemi, A. Coniglio, Phys. Rev. E 84, 041308 (2011)

    Article  ADS  Google Scholar 

  37. R. Mari, R. Seto, J.F. Morris, M.M. Denn, J. Rheol. 58, 1693 (2014)

    Article  ADS  Google Scholar 

  38. M. Grob, C. Heussinger, A. Zippelius, Phys. Rev. E 89, 050201(R) (2014)

    Article  ADS  Google Scholar 

  39. T. Kawasaki, A. Ikeda, L. Berthier, EPL 107, 28009 (2014)

    Article  ADS  Google Scholar 

  40. M. Wyart, M.E. Cates, Phys. Rev. Lett. 112, 098302 (2014)

    Article  ADS  Google Scholar 

  41. M. Grob, A. Zippelius, C. Heussinger, Phys. Rev. E 93, 030901(R) (2016)

    Article  ADS  Google Scholar 

  42. I.R. Peters, S. Majumdar, H.M. Jaeger, Nature 532, 214 (2016)

    Article  ADS  Google Scholar 

  43. A. Fall, F. Bertrand, D. Hautemayou, C. Mezière, P. Moucheront, A. Lemaître, G. Ovarlez, Phys. Rev. Lett. 114, 098301 (2015)

    Article  ADS  Google Scholar 

  44. S. Sarkar, E. Shatoff, K. Ramola, R. Mari, J. Morris, B. Chakraborty, EPJ Web Conf. 140, 09045 (2017)

    Article  Google Scholar 

  45. A. Singh, R. Mari, M.M. Denn, J.F. Morris, J. Rheol. 62, 457 (2018)

    Article  ADS  Google Scholar 

  46. T. Kawasaki, L. Berthier, Phys. Rev. E 98, 012609 (2018)

    Article  ADS  Google Scholar 

  47. J.E. Thomas, K. Ramola, A. Singh, R. Mari, J.F. Morris, B. Chakraborty, Phys. Rev. Lett. 121, 128002 (2018)

    Article  ADS  Google Scholar 

  48. D. Bi, J. Zhang, B. Chakraborty, R. Behringer, Nature 480, 355 (2011)

    Article  ADS  Google Scholar 

  49. J. Zhang, T. Majmudar, R. Behringer, Chaos 18, 041107 (2008)

    Article  ADS  Google Scholar 

  50. J. Zhang, T.S. Majmudar, A. Tordesillas, R.P. Behringer, Granul. Matter 12, 159 (2010)

    Article  Google Scholar 

  51. D. Wang, J. Ren, J.A. Dijksman, H. Zheng, R.P. Behringer, Phys. Rev. Lett. 120, 208004 (2018)

    Article  ADS  Google Scholar 

  52. Y. Zhao, J. Barés, H. Zheng, J.E.S. Socolar, R.P. Behringer, Phys. Rev. Lett. 123, 158001 (2019)

    Article  ADS  Google Scholar 

  53. S. Sarkar, D. Bi, J. Zhang, R.P. Behringer, B. Chakraborty, Phys. Rev. Lett. 111, 068301 (2013)

    Article  ADS  Google Scholar 

  54. S. Sarkar, D. Bi, J. Zhang, J. Ren, R.P. Behringer, B. Chakraborty, Phys. Rev. E 93, 042901 (2016)

    Article  ADS  Google Scholar 

  55. R. Seto, A. Singh, B. Chakraborty, M.M. Denn, J.F. Morris, Granul. Matter 21, 82 (2019)

    Article  Google Scholar 

  56. H. Pradipto Hayakawa, Soft Matter 16, 945 (2020)

    Article  ADS  Google Scholar 

  57. M. Otsuki, H. Hayakawa, Phys. Rev. E 101, 032905 (2020)

    Article  ADS  Google Scholar 

  58. D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  59. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

Download references

Acknowledgements

The authors thank K. Saitoh and D. Ishima for fruitful discussion. This work was supported by JSPS KAKENHI Grant Nos. JP16H04025, JP19K03670, and JP21H01006, and ISHIZUE 2020 of the Kyoto University Research Development Program.

Author information

Authors and Affiliations

Authors

Contributions

M.O. carried out the simulations. Both authors interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Michio Otsuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuki, M., Hayakawa, H. Shear modulus and reversible particle trajectories of frictional granular materials under oscillatory shear. Eur. Phys. J. E 44, 70 (2021). https://doi.org/10.1140/epje/s10189-021-00075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00075-0

Navigation