Skip to main content
Log in

Growth transitions and critical behavior in the non-equilibrium aggregation of short, patchy nanorods

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We have carried out Monte Carlo simulations to study the non-equilibrium aggregation of short patchy nanorods in two dimensions. Below a critical value of patch size (\(p_c = 0.31675\)), the aggregates have finite sizes with small radii of gyration, \(R_g\). At \(p_c\), the average radius of gyration shows a power law increase with time such that \(<R_g>\sim t^{\gamma }\), where \(\gamma =0.411 \pm 0.006\). Above, \(p_c\), the aggregates are fractal in nature and their fractal dimension depends on the value of patch size. These morphological differences are due to the fact that below the critical value of patch size (\(p_{c}\)), the growth of the clusters is suppressed and the system reaches an ‘absorbed state.’ Above \(p_{c}\), the system reaches an ‘active state,’ in which the cluster size keeps growing with a fixed rate at long times. Thus, the system encounters a non-equilibrium phase transition. Close to the transition, the growth rate scales as \(\varGamma (t) \sim t^{-\alpha }\), where \(\alpha = 0.160 \pm 0.030\). The long-time growth rate varies as \(\varGamma (\infty )\sim (p-p_c)^\beta \) where \(\beta = 0.279 \pm 0.034\). These scaling exponents indicate that the transition belongs to the directed percolation universality class. The patchy nanorods also display a threshold patch size (\(p_{t}\)), beyond which the long-time growth rate remains constant. We present geometric arguments for the existence of \(p_t\). The fractal dimension of the aggregates increases from 1.75, at \(p_c\), to 1.81, at \(p_t\). It remains constant beyond \(p_t\).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.C. Glotzer, M.J. Solomon, Nat. Mat. 6, 557 (2007)

    Article  Google Scholar 

  2. J. Yan, K. Chaudhary, S.C. Bae, J.A. Lewis, S. Granick, Nat. Comm. 4, 1516 (2013)

    Article  ADS  Google Scholar 

  3. E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)

    Article  Google Scholar 

  4. A. Walther, A.H.E. Muller, Soft Matter 4, 663 (2008)

    Article  ADS  Google Scholar 

  5. A. Walther, M. Drechsler, A.H.E. Muller, Soft Matter 5, 385 (2009)

    Article  ADS  Google Scholar 

  6. S. Granick, S. Jiang, Q. Chen, Phys. Today 62, 68 (2009)

    Article  Google Scholar 

  7. B.J. Park, T. Brugarolas, D. Lee, Soft Matter 7, 6413 (2011)

    Article  ADS  Google Scholar 

  8. J.R. Wolters, J.E. Verweij, G. Avvisati, M. Dijkstra, W.K. Kegel, Langmuir 33, 3270 (2017)

    Article  Google Scholar 

  9. S. Jiang, S. Granick, Langmuir 24, 2438 (2008)

    Article  Google Scholar 

  10. C.E. Snyder, A.M. Yake, J.D. Feick, D. Velegol, Langmuir 21, 4813 (2005)

    Article  Google Scholar 

  11. K.H. Roh, D.C. Martin, J. Lahann, J. Am. Chem. Soc. 128, 6796 (2006)

    Article  Google Scholar 

  12. Q. Chen, J.K. Whitmer, S. Jiang, S.C. Bae, E. Luijten, S. Granick, Science 331, 119 (2011)

    Google Scholar 

  13. A.B. Pawar, I. Kretzschmar, Lagmuir 24, 355 (2008)

    Article  Google Scholar 

  14. A.B. Pawar, I. Kretzschmar, Lagmuir 25, 9057 (2009)

    Article  Google Scholar 

  15. C.S. Dias, N.A.M. Araujo, M.M.T. da Gama, Phys. Rev. E 87, 032308 (2013)

    Article  ADS  Google Scholar 

  16. C.S. Dias, N.A.M. Araujo, M.M.T. da Gama, Phys. Rev. E 90, 032302 (2014)

    Article  ADS  Google Scholar 

  17. C.S. Dias, N.A.M. Araujo, M.M.T. da Gama, Mol. Phys. 113, 1069 (2015)

    Article  ADS  Google Scholar 

  18. M.J. Kartha, A. Sayeed, Phys. Letts. A 380, 2791 (2016)

    Article  ADS  Google Scholar 

  19. M.J. Kartha, A.G. Banpurkar, Phys. Rev. E 94, 062108 (2016)

    Article  ADS  Google Scholar 

  20. M.J. Kartha, Phys. Letts. A 381, 556 (2017)

    Article  ADS  Google Scholar 

  21. W. Bol, Mol. Phys. 45, 605 (1982)

    Article  ADS  Google Scholar 

  22. N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003)

    Article  ADS  Google Scholar 

  23. A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 131, 174114 (2009)

    Article  ADS  Google Scholar 

  24. F. Sciortino, A. Giacometti, G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)

    Article  ADS  Google Scholar 

  25. M. Tripathy, K.S. Schweizer, J. Phys. Chem. B 117, 373 (2013)

    Article  Google Scholar 

  26. J.L.C. Domingos, F.M. Peeters, W.P. Ferreira, Phys. Rev. E 96, 012603 (2017)

    Article  ADS  Google Scholar 

  27. T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

    Article  ADS  Google Scholar 

  28. W. Sun, W. Wang, Y. Gu, X. Xu, G. Gong, Fuel 191, 106 (2017)

    Article  Google Scholar 

  29. Y. Sawada, A. Dougherty, J.P. Gollub, Phys. Rev. Lett. 56, 1260 (1986)

    Article  ADS  Google Scholar 

  30. H. Eba, K. Sakurai, J. Electroanal. Chem. 571, 149 (2004)

    Article  Google Scholar 

  31. D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman, C. Tang, Rev. Mod. Phys. 58, 977 (1986)

    Article  ADS  Google Scholar 

  32. B. Gerß, N. Osterloh, S.C. Heidorn, K. Morgenstern, Cryst. Growth Des. 15, 3046 (2015)

    Article  Google Scholar 

  33. S. Douezan, F. Brochard-Wyart, Soft Matter 8, 784 (2012)

    Article  ADS  Google Scholar 

  34. P.L. Niemeyer, L., H.J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984)

  35. R.M. Brady, R. Ball, Nature 309, 225 (1984)

    Article  ADS  Google Scholar 

  36. L. Deng, Y. Wang, Z.C.O. Yang, J. Comm. Theor. Phys 58, 895 (2012)

    Article  ADS  Google Scholar 

  37. F.L. Braga, O.A. Mattos, V.S. Amorin, A.B. Souza, Physica A 429, 28 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Y. Iwashita, Y. Kimura, Soft Matter 9, 10694 (2013)

    Article  ADS  Google Scholar 

  39. Y. Iwashita, Y. Kimura, Soft Matter 10, 7170 (2014)

    Article  ADS  Google Scholar 

  40. K. Chaudhary, Q. Chen, J.J. Juarez, S. Granick, J.A. Lewis, J. Am. Chem. Soc. 134, 12901 (2012)

    Article  Google Scholar 

  41. E.G. Noya, C. Vega, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 132, 234511 (2010)

    Article  ADS  Google Scholar 

  42. A.A. Shah, B. Schultz, K.L. Kohlstedt, S.C. Glotzer, M.J. Solomon, Langmuir 29, 4688 (2013)

    Article  Google Scholar 

  43. T. Vissers, A.T. Brown, N. Koumakis, A. Dawson, M. Hermes, J. Schwarz-Linek, A.B. Schofield, J.M. French, V. Koutsos, J. Arlt et al., Sci. Adv. 4, 1170 (2018)

    Article  ADS  Google Scholar 

  44. M. Jurasek, R. Vacha, Soft Matter 13, 7492 (2017)

    Article  ADS  Google Scholar 

  45. A. Rupela, M.O. Menegon, C. Wu, P.v d Schoot, E. Grelet, Phys. Rev. Lett. 122, 128008 (2019)

    Article  ADS  Google Scholar 

  46. D.A. Matoz-Fernandez, D.H. Linares, A.J. Ramirez-Pastor, J. Chem. Phys. 128, 214902 (2008)

    Article  ADS  Google Scholar 

  47. D. Nieckarz, P. Szabelski, J. Phys. Chem. C 117, 11229 (2013)

    Article  Google Scholar 

  48. W. Rzysko, D. Nieckarz, P. Szabelski, Adsorption 25, 75 (2019)

    Article  Google Scholar 

  49. S.G. Alves, S.C. Ferreira, Phys. Rev. E 73, 051401 (2006)

    Article  ADS  Google Scholar 

  50. I.R. Nogueira, S.G. Alves, S.C. Ferreira, Physica A 390, 4087 (2011)

    Article  ADS  Google Scholar 

  51. S.C. Ferreira, S.G. Alves, A.F. Brito, J.G. Moreira, Phys. Rev. E 71, 051402 (2005)

    Article  ADS  Google Scholar 

  52. W. Wang, Y. Chau, Soft Matter 5, 4893 (2009)

  53. A. Chandra, M.K. Shukla, P.C. Mishra, S. Chandra, Phys. Rev. E 51, R2767 (1995)

    Article  ADS  Google Scholar 

  54. J. Parkinson, K.E. Kadler, A. Brass, Phys. Rev. E 50, 2963 (1994)

  55. J.R. Rothenbuhler, J.R. Huang, B.A. DiDonna, A.J. Levine, T.G. Mason, Soft Matter 5, 3639 (2009)

  56. S. Tolman, P. Meakin, Phys. Rev. A 40, 428 (1989)

    Article  ADS  Google Scholar 

  57. H.K. Janssen, Z. Physik. B: Condens. Matter 42, 151 (1981)

    Article  ADS  Google Scholar 

  58. P. Grassberger, Z. Physik. B Condens. Matter 47, 365 (1982)

    Article  ADS  Google Scholar 

  59. R. Ziff, E. Gulari, Y. Barshad, Phys. Rev. Lett. 56, 2553 (1986)

    Article  ADS  Google Scholar 

  60. M. Kohl, R.F. Capellmann, M. Laurati, S.U. Egelhaaf, M. Schmiedeberg, Nat. Commun. 7, 11817 (2016)

    Article  ADS  Google Scholar 

  61. P. Grassberger, Math. Biosci. 63, 151 (1983)

    Article  Google Scholar 

  62. M. Henkel, H. Hinrichsen, S. Lubeck, Non-Equilibrium Phase Transitions, vol. 1 (Springer, Berlin, 2008)

    MATH  Google Scholar 

  63. M.K. Hassan, D. Alam, Z.I. Jitu, M.M. Rahman, Phys. Rev. E 96, 050101(R) (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Spacetime High Performance Computing facility of Indian Institute of Technology, Bombay, which was used for the work presented in this article.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Mukta Tripathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartha, M.J., Tripathy, M. Growth transitions and critical behavior in the non-equilibrium aggregation of short, patchy nanorods. Eur. Phys. J. E 44, 72 (2021). https://doi.org/10.1140/epje/s10189-021-00064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00064-3

Navigation