Skip to main content
Log in

Study of heat and mass transport on the instability of a swirling viscoelastic liquid film

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this article, we examine the response of transport of mass and heat at the viscous gas–viscoelastic liquid interface, while the instability of the interface is defined by capillary instability. The fluids are enclosed in an annular region bounded by two rigid cylinders. The Oldroyd B-type viscoelastic fluid is considered and the outer cylinder is swirling with a uniform angular velocity. The governing mathematical equations are work out through the viscoelastic-viscous potential flow theory. The well-known normal mode procedure is utilized and a critical value of wave-number is calculated to determine the stability/instability norm for the interface. Various plots showing the effect of swirling, heat/mass transfer, etc. have been made and illustrated physically. The addition of swirl prevents the development of disturbance waves. We achieve that the transport of mass/heat at the interface reduces the amplitudes of perturbations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data].

Abbreviations

\(\rho _{o}\) :

Density of Oldroyd B viscoelastic fluid

\(\mu _{o}\) :

Viscosity of Oldroyd B viscoelastic fluid

\(\lambda _{o}\) :

Viscoelasticity of Oldroyd B viscoelastic fluid

\(\varOmega \) :

Angular velocity of outer cylinder

\(T_{o}\) :

Temperature of outer phase

\(\sigma \) :

Surface tension

\(r_{2}\) :

Radius of outer cylinder

\(\rho _{i}\) :

Density of viscous fluid

\(\mu _{i}\) :

Viscosity of viscous fluid

k :

Wave number

\(\omega \) :

Growth rate of disturbances

\(T_{i}\) :

Temperature of inner phase

R :

Radius of the interface

\(r_{1}\) :

Radius of inner cylinder

References

  1. D.Y. Hsieh, Effect of heat and mass transfer on Rayleigh–Taylor instability. Trans. ASME 94 D, 156–162 (1972)

    Article  Google Scholar 

  2. D.Y. Hsieh, Interfacial stability with mass and heat transfer. Phys. Fluids 21, 745–748 (1978)

    Article  ADS  MATH  Google Scholar 

  3. A.R. Nayak, B.B. Chakraborty, Kelvin-Helmholtz stability with mass and heat transfer. Phys. Fluids 27, 1937 (1984)

    Article  ADS  MATH  Google Scholar 

  4. D.S. Lee, Nonlinear Instability of Cylindrical Flow with Mass and Heat Transfer. Physica Scripta 67, 420–426 (2002)

    Article  ADS  MATH  Google Scholar 

  5. D.S. Lee, Nonlinear Kelvin-Helmholtz instability of cylindrical flow with mass and heat transfer. Physica Scripta 76, 97–103 (2007)

    Article  ADS  MATH  Google Scholar 

  6. A.R. Seadawy, K. El-rashidy, Nonlinear Rayleigh-Taylor instability of the cylindrical fluid flow with mass and heat transfer. Pramana 87, 20 (2016)

    Article  ADS  Google Scholar 

  7. M. Ghalambaz, S.A.M. Mehryan, N. Mashoofi, A. Hajjar, A.J. Chamkha, M. Sheremet, O. Younis, Free convective melting-solidification heat transfer of nano encapsulated phase change particles suspensions inside a coaxial pipe. Adv. Powder Technol. 31, 4470–4481 (2020)

    Article  Google Scholar 

  8. S.M.H. Zadeh, S.A.M. Mehryan, M. Ghalambaz, M. Ghodrat, J. Young, A. Chamkha, Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives. Energy 213, 118761 (2020)

    Article  Google Scholar 

  9. S.A.M. Mehryan, M. Ghalambaz, A.J. Chamkha, M. Izadi, Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model. Powder Technol. 367, 443–455 (2020)

    Article  Google Scholar 

  10. M. Ghalambaz, S.A.M. Mehryan, I. Zahmatkesh, A. Chamkha, Free convection heat transfer analysis of a suspension of nano-encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int. J. Thermal Sci. 157, 106503 (2020)

    Article  Google Scholar 

  11. D.S. Lee, Nonlinear Rayleigh instability of cylindrical flow with mass and heat transfer. J. Phys. A: Math. Gen. 36, 573–580 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H.J. Kim, S.J. Kwon, J.C. Padrino, T. Funada, Viscous potential flow analysis of capillary instability with heat and mass transfer. J. Phys. A Math. Theor. 41, 1–10 (2008)

    MathSciNet  MATH  Google Scholar 

  13. M.K. Awasthi, G.S. Agrawal, Nonlinear analysis of capillary instability with heat and mass transfer. Commun. Non-Sci. Numer. Simulate 17, 2463–2475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.K. Awasthi, R. Asthana, Viscous potential flow analysis of capillary instability with and mass transfer through porous media. Int. Commun. Heat Mass Trans. 41, 7–11 (2013)

    Article  Google Scholar 

  15. M.K. Awasthi, Nonlinear analysis of capillary instability with mass transfer through porous media. EPJ Plus 129, 78 (2014)

    Google Scholar 

  16. A. Wakif, A. Chamkha, T. Thumma, I.L. Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J. Thermal Anal. Calorim. 143, 1201–1220 (2021)

    Article  Google Scholar 

  17. H.S. Takhar, A.J. Chamkha, G. Nath, Combined heat and mass transfer along a vertical moving cylinder with a free stream. Heat Mass Trans. 36, 237–246 (2000)

    Article  ADS  Google Scholar 

  18. A. Bhattacharyya, G.S. Seth, R. Kumar, A.J. Chamkha, Simulation of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon nano-tubes between two stretchable coaxial rotating disk. J. Therm. Anal. Calorim. 139, 1655–1670 (2020)

    Article  Google Scholar 

  19. P.S. Reddy, P. Sreedevi, A.J. Chamkha, MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. Powder Technol. 307, 46–55 (2017)

    Article  Google Scholar 

  20. A.J. Chamkha, Flow of two-immiscible fluids in porous and nonporous channels. J. Fluids Eng. 122, 117–124 (2000)

    Article  Google Scholar 

  21. A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 9, 025103 (2019)

    Article  ADS  Google Scholar 

  22. N.S. Shashi Kumar, B.J. Gireesha, B.C. Prasannakumara, A.J. Chamkha, Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. Int. J. Num. Method Heat Fluid Flow 29 (2019). https://doi.org/10.1108/HFF-06-2018-0301

  23. S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain, A.J. Chamkha, Thermal conductivity variation on natural convection flow of water-alumina nanofluid in an annulus. Int. J. Heat Mass Trans. 55, 5268–5274 (2012)

    Article  Google Scholar 

  24. A.J. Chamkha, Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media. Int. Commun. Heat Mass Trans. 23, 875–887 (1996)

    Article  Google Scholar 

  25. A.J. Chamkha, Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer. Heat Trans., Part A 39, 511–530 (2001)

    Article  ADS  Google Scholar 

  26. M. Ghalambaz, A. Behseresht, J. Behseresht, A. Chamkha, Effects of nanoparticles diameter and concentration on natural convection of the Al2O3-water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv. Powder Technol. 26, 224–235 (2015)

    Article  Google Scholar 

  27. Q.F. Fu, X.D. Deng, L.J. Yang, Kelvin-Helmholtz instability analysis of confined Oldroyd-B liquid film with heat and mass transfer. J. Non-Newtonian Fluid Mech. 267, 28–34 (2019)

    Article  MathSciNet  Google Scholar 

  28. M.K. Awasthi, Capillary instability of viscoelastic liquid film with heat and mass transfer. ASME-J. Heat Trans. 142, 022108 (2020). ((5 pages))

    Article  Google Scholar 

  29. M.K. Awasthi, Kelvin-Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer. Int. J. Thermal Sci. 161, 106710 (2021)

    Article  Google Scholar 

  30. A.M. Binnie, Theory of waves traveling on the core in a swirling liquid. Proc. R. Soc. Lond. A 205, 530–540 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S.A. Schumaker, S. Danczyk, M. Lightfoot, Effect of swirl on gas-centered swirl-coaxial injectors. in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2011)

  32. Q.F. Fu, L.J. Yang, M.X. Tong, C. Wang, Absolute and convective instability of a confined swirling annular liquid layer. At. Sprays 24, 555–573 (2014)

    Article  Google Scholar 

  33. A.J. Chamkha, A.A. Mudhaf, Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int. J. Thermal Sci. 44, 267–276 (2005)

    Article  Google Scholar 

  34. Q.F. Fu, B.Q. Jia, L.J. Yang, Stability of a confined swirling annular liquid layer with heat and mass transfer. Int. J. Heat Mass Trans. 104, 644–649 (2017)

    Article  Google Scholar 

  35. Q.F. Fu, X.D. Deng, B.Q. Jia, L.J. Yang, Temporal Instability of a Confined Liquid Film with Heat and Mass Transfer. AIAA. https://doi.org/10.2514/1.J056834

  36. M.K. Awasthi, Rayleigh-Taylor instability of swirling annular layer with mass transfer. ASME-J. Fluid Eng. 141, 071202 (2019). ((5 pages))

    Article  Google Scholar 

  37. B.Q. Jia, L.J. Yang, L. Xie, Q.F. Fu, X. Cui, Linear stability of confined swirling annular liquid layers in the presence of gas velocity oscillations with heat and mass transfer. Int. J. Heat Mass Trans. 138, 117–125 (2019)

    Article  Google Scholar 

  38. M.K. Awasthi, S. Agrawal, Stability analysis between two concentric rotating cylinders with heat and mass transfer. Heat Trans.-Asian Res. 49, 971–983 (2020)

    Google Scholar 

Download references

Acknowledgements

The author M.K. A. is thankful to UGC-BSR (New-Delhi, India) (project No.F.30-442/2018 (BSR)) for start-up-grant and research funding.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were involved in the preparation of the manuscript. They have read and approved the final manuscript.

Corresponding author

Correspondence to Mukesh Kumar Awasthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, M.K., Hoshoudy, G.A. Study of heat and mass transport on the instability of a swirling viscoelastic liquid film. Eur. Phys. J. E 44, 36 (2021). https://doi.org/10.1140/epje/s10189-021-00048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00048-3

Navigation