Skip to main content
Log in

Droplet rolling angle model of micro-nanostructure superhydrophobic coating surface

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The droplet rolling angle is one of the important indicators to measure the coating’s hydrophobic performance, but the specific factors affecting the droplet rolling angle on the micro-nanostructured superhydrophobic coating surface are not yet known. Based on the rolling mechanism of droplets on rough surfaces, and from the perspective of coating microscopic energy conservation, this paper points out that the micron-scale morphology and the nanoscale morphology can comprehensively affect the droplet rolling angle. From the above perspective, a mathematical model of the droplet rolling angle on the micro-nanostructure superhydrophobic coating surface was established. The model shows that the droplet rolling angle is positively correlated with the ratio of nano-sized pillar width to spacing, the ratio of micron-sized papilla radius to spacing, and the liquid–gas interfacial tension, and is negatively correlated to the droplet intrinsic contact angle, droplet volume and droplet density. The droplet rolling angle calculated by the presented model is in good agreement with the experimentally tested results. This model can provide good accuracy in predicting the droplet rolling angle on the micro-nanostructured superhydrophobic coating surface.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L. Feng, S. Li, Y. Li et al., Adv. Mater. 14, 1857–1860 (2002)

    Google Scholar 

  2. R. Jafari, R. Menini, M. Farzaneh, Appl. Surf. Sci. 257, 1540–1543 (2010)

    Google Scholar 

  3. A.A. Yancheshme, G. Momen, R.J. Aminabadi, Adv. Colloid Interface Sci. 279, 102155 (2020)

    Google Scholar 

  4. Y. Zhang, X. Yu, H. Wu et al., Appl. Surf. Sci. 258, 8253–8257 (2012)

    Google Scholar 

  5. Y. Wu, C. Zhang, Appl. Therm. Eng. 58, 664–669 (2013)

    Google Scholar 

  6. P. Wang, D. Zhang, R. Qiu, Corrosion Sci. 54, 77–84 (2012)

    Google Scholar 

  7. T. He, Y. Wang, Y. Zhang et al., Corrosion Sci. 51, 1757–1761 (2009)

    Google Scholar 

  8. R. Fürstner, W. Barthlott, C. Neinhuis et al., Langmuir 21, 956–961 (2005)

    Google Scholar 

  9. D.W. Bechert, M. Bruse, W. Hage et al., Naturwissenschaften 87, 157–171 (2000)

    Google Scholar 

  10. T. Ishizaki, J. Hieda, N. Saito et al., Electrochim. Acta 55, 7094–7101 (2010)

    Google Scholar 

  11. J. Gao, X. Huang, H. Xue et al., Chem. Eng. J. 326, 443–453 (2017)

    Google Scholar 

  12. L. Ye, J. Guan, Z. Li et al., Langmuir 33, 1368–1374 (2017)

    Google Scholar 

  13. J.J. Bikerman, J. Phys. Chem. 54, 653–658 (1950)

    Google Scholar 

  14. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546–551 (1944)

    Google Scholar 

  15. C.H. Kung, P.K. Sow, B. Zahiri et al., Adv. Mater. Interfaces 6, 1900839 (2019)

    Google Scholar 

  16. A. Solga, Z. Cerman, B.F. Striffler et al., Bioinspir. Biomim. 2, S126–34 (2008)

    Google Scholar 

  17. J. Feng, Z. Qin, S. Yao et al., Langmuir 28, 6067–6075 (2012)

    Google Scholar 

  18. M. Jin, X. Feng, J. Xi et al., Macromol. Rapid Commun. 26, 1805–1809 (2005)

    Google Scholar 

  19. T. Furuta, A. Nakajima, M. Sakai et al., Langmuir 25, 5417 (2009)

    Google Scholar 

  20. N. Gao, F. Geyer, D.W. Pilat et al., Nat. Phys. 14, 191–196 (2018)

    Google Scholar 

  21. T. Furuta, M. Sakai, T. Isobe et al., Langmuir 27, 7307–13 (2011)

    Google Scholar 

  22. A. Nakajima, Y. Nakagawa, T. Furuta et al., Langmuir 29, 9269–9275 (2013)

    Google Scholar 

  23. M. Backholm, D. Molpeceres, M. Vuckovac et al., Communications Materials 1, 64 (2020)

    Google Scholar 

  24. Y.I. Frenkel, Physics, Exp. Theoret. Phys. (USSR) 18, 659 (1948)

    Google Scholar 

  25. M. Miwa, A. Nakajima, A. Fujishima et al., Langmuir 16, 5754–5760 (2000)

    Google Scholar 

  26. C.G.L. Furmidge, Journal of Colloid Science 17, 309–324 (1962)

    Google Scholar 

  27. J. Zhu, X. Dai, AIP Adv. 9, 065309 (2019)

    Google Scholar 

  28. X. Zhang, Y. Qin, J. Colloid Interface Sci. 545, 231–241 (2019)

    Google Scholar 

  29. C. Lv, C. Yang, P. Hao et al., Langmuir 26, 8704–8 (2010)

    Google Scholar 

  30. J.P. Youngblood, T.J. Mcccarthy, Macromolecules 32, 6800 (1999)

    Google Scholar 

  31. W. Huang, C. Lin, Appl. Surf. Sci. 305, 702–709 (2014)

    Google Scholar 

  32. R. Weng, H. Zhang, X. Liu, AIP Adv. 4, 031327 (2014)

    Google Scholar 

  33. H. Ogihara, J. Xie, T. Saji, Colloid Surf. A-Physicochem. Eng. Asp. 434, 35–41 (2013)

    Google Scholar 

  34. J. Ma, X. Zhang, Y. Bao et al., Colloid Surf. A-Physicochem. Eng. Asp. 472, 21–25 (2015)

    Google Scholar 

  35. S. Herminghaus, Europhys. Lett. 52, 165 (2007)

    Google Scholar 

  36. S. Ren, J. Chen, M. Jiang et al., Colloid Surf. A-Physicochem. Eng. Asp. 611, 125849 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Fund, China, Grant No. 52077091, and the instrument support provided by the Analysis and Test Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Jinyu Chen involved in writing, data curation, investigation, methodology, and software. Junwu Chen involved in project administration, validation and supervision. Lee Li involved in investigation and supervision. Shengwu Wang involved in data curation and software. Yi Xie involved in resources.

Corresponding authors

Correspondence to Junwu Chen or Lee Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, J., Li, L. et al. Droplet rolling angle model of micro-nanostructure superhydrophobic coating surface. Eur. Phys. J. E 44, 25 (2021). https://doi.org/10.1140/epje/s10189-021-00036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00036-7

Navigation