Skip to main content

Advertisement

Log in

Exploring the heat transfer and entropy generation of Ag/Fe\(_3\)O\(_4\)-blood nanofluid flow in a porous tube: a collocation solution

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

 Evaluating the entropy generation is essential in thermal systems to avoid the unnecessarily wasted thermal energy during the thermal processes. Nowadays, researchers are greatly fascinated to scrutinize the entropy generation in a human system because it is utilized as a thermodynamic approach to understand the heat transfer characteristics of cancer systems or wounded tissue and their accessibility status. Further, numerous nanoparticles have been employed as an agent to control the heat transfer of blood and wounded tissue. As a result, the present model manifests the entropy generation, flow characteristics and heat transport of Ag/Fe\(_3\)O\(_4\)-blood flow of a nanofluid in a permeable circular tube with the influence of variable electrical conductivity and linear radiation. Nonlinear transport equations are converted into ordinary differential equations by suitable similarity variables which are solved with weighted residual method. Significant parameters like Reynolds number, dimensionless permeability parameter, extending/contracting parameter, Eckert number and Hartmann number on the radial pressure, axial velocity, radial velocity and temperature are explored through graphs. The obtained results show that temperature distribution of Fe\(_3\)O\(_4\) nanoparticles is higher than Ag nanoparticle, in case of suction. The dimensionless permeability parameter has an opposite nature on the radial pressure for the suction and injection cases. Growing values of Hartmann number enhance the total entropy generation for the cases of suction and injection.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. A. Bejan, J. Heat Transf. 101, 718–725 (1979)

    Google Scholar 

  2. L. Luo, Front. Phys. China 4, 1–20 (2009)

    ADS  Google Scholar 

  3. M.M. Bhatti, T. Abbas, M.M. Rashidi, M.E.-S. Ali, Entropy 18, 1–14 (2016)

    Google Scholar 

  4. H.T. Basha, R. Sivaraj, V.R. Prasad, O.A. Beg, J. Therm. Anal. Calorim. 12, 491–508 (2020)

    Google Scholar 

  5. S.O. Adesanya, O.D. Makinde, Comput. Appl. Math. 34, 293–304 (2014)

    Google Scholar 

  6. S. Parvin, A.J. Chamkha, Int. Commun. Heat Mass Transf. 54, 8–17 (2014)

    Google Scholar 

  7. M.M. Rashidi, M.M. Bhatti, M.A. Abbas, M.E. Ali, Entropy 18, 117 (2016)

    ADS  Google Scholar 

  8. N. Shukla, P. Rana, O.A. Beg, B. Singh, A. Kadir, Propuls. Power Res. 8, 147–162 (2019)

    Google Scholar 

  9. S. Rashidi, L. Yang, A. Khoosh-Ahang, D. Jing, O. Mahian, Environ. Sci. Pollut. Res. 27, 20699–20724 (2020)

    Google Scholar 

  10. R.L. Monaledi, O.D. Makinde, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09919-x

    Article  Google Scholar 

  11. D. Tripathi, O.A. Beg, Int. J. Heat Mass Transf. 70, 61–70 (2014)

    Google Scholar 

  12. M.A. Abbas, Y.Q. Bai, M.M. Rashidi, M.M. Bhatti, J. Mech. Med. Biol. 16, 1650052 (2015)

    Google Scholar 

  13. K. Khanafer, K. Vafai, Renew. Energy 123, 398–406 (2018)

    Google Scholar 

  14. H.T. Basha, R. Sivaraj, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2020). https://doi.org/10.1177/0954406220947454

    Article  Google Scholar 

  15. M. Sheikholeslami, R. Ellahi, Z. Naturforsch. 70, 115–124 (2015)

    Google Scholar 

  16. H.T. Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, Eur. Phys. J. Spec. Top. 228(228), 2531–2551 (2019)

    Google Scholar 

  17. J. Prakash, D. Tripathi, O.A. Beg, Appl. Nanosci. 10, 1693–1706 (2020)

    ADS  Google Scholar 

  18. S.S. Ghadikolaei, K. Hosseinzadeh, D.D. Ganji, J. Mol. Liq. 262, 376–388 (2018)

    Google Scholar 

  19. S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain, A.J. Chamkha, Int. J. Heat Mass Transf. 55, 5268–5274 (2012)

    Google Scholar 

  20. S. Srinivas, A. Vijayalakshmi, A.S. Reddy, T.R. Ramamohan, Propuls. Power Res. 5, 134–148 (2016)

    Google Scholar 

  21. I. Shahzadi, S. Nadeem, J. Mol. Liq. 225, 365–381 (2017)

    Google Scholar 

  22. M. Sheikholeslami, M. Shamlooei, Int. J. Hydrogen Energy 42, 5708–5718 (2017)

    Google Scholar 

  23. N.S. Shashikumar, B.J. Gireesha, B. Mahanthesh, B.C. Prasannakumara, A.J. Chamkha, Int. J. Numer. Method Heat 29, 3638–3658 (2019)

    Google Scholar 

  24. A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, AIP Adv. 9, 025103 (2019)

    ADS  Google Scholar 

  25. A.S. Dogonchi, T. Tayebi, A.J. Chamkha, D.D. Ganji, J. Therm. Anal. Calorim. 139, 661–671 (2019)

    Google Scholar 

  26. F. Selimefendigil, H.F. Oztop, A.J. Chamkha, Int. J. Numer. Method Heat 30, 1755–1772 (2019)

    Google Scholar 

  27. N.A. Shah, I.L. Animasaun, A. Wakif, O.K. Koriko, R. Sivaraj, K.S. Adegbie, Z. Abdelmalek, H. Vaidyaa, A.F. Ijirimoye, K.V. Prasad, Phys. Scr. 95, 95205 (2020)

    Google Scholar 

  28. A. Wakif, A. Chamkha, T. Thumma, I.L. Animasaun, R. Sehaqui, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09488-z

    Article  Google Scholar 

  29. H.T. Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, H.M. Baskonus, AIMS Math. 5, 4197–4219 (2020)

    MathSciNet  Google Scholar 

  30. H.T. Basha, R. Sivaraj, I.L. Animasaun, Comput. Therm. Sci. (2020). https://doi.org/10.1615/ComputThermalScien.2020034373

    Article  Google Scholar 

  31. H.T. Basha, R. Sivaraj, Spec. Top. Rev. Porous Media (2020). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2020034290

    Article  Google Scholar 

  32. E.M. Renehan, F.K. Enneking, M. Varshney, R. Partch, D.M. Dennis, T.E. Morey, Reg. Anesthesiol. Pain Med. 30, 380–384 (2005)

    Google Scholar 

  33. X. Qin, W. Lu, Y. Luo, G. Chang, X. Sun, Electrochem. Commun. 13, 785–787 (2011)

    Google Scholar 

  34. A.M. Atta, G.A. El-Mahdy, H.A. Al-Lohedan, A.R.O. Ezzat, Molecules 20, 11131–11153 (2015)

    Google Scholar 

  35. R. Emmanuel, M. Saravanan, M. Ovais, S. Padmavathy, Z. Shinwari, P. Prakash, Microb. Pathog. 113, 295–302 (2017)

    Google Scholar 

  36. M. Składanowski, M. Wypij, D. Laskowski, P. Golinska, H. Dahm, M. Rai, J. Clust. Sci. 28, 59–79 (2017)

    Google Scholar 

  37. M. Sanjivkumar, R. Vaishnavi, M. Neelakannan, D. Kannan, T. Silambarasan, G. Immanuel, Biocatal. Agric. Biotechnol. 17, 151–159 (2019)

    Google Scholar 

  38. S. Iqbal, M. Fakhar-e-alam, F. Akbar, M. Sha, M. Atif, N. Amin, M. Ismail, A. Hanif, W.A. Farooq, J. Mol. Struct. J. 1189, 203–209 (2019)

    ADS  Google Scholar 

  39. A.K. Biswal, P.K. Misra, Mater. Chem. Phys. 250, 123014 (2020)

    Google Scholar 

  40. S. Nasrin, F. Chowdhury, S.M. Hoque, J. Magn. Magn. Mater. 479, 126–134 (2019)

    ADS  Google Scholar 

  41. S. Gandhi, S. Issar, A.K. Mahapatro, I. Roy, J. Mol. Liq. 310, 113194 (2020)

    Google Scholar 

  42. K.K. Kefeni, T.A.M. Msagati, T. Ti, B.B. Mamba, Mater. Sci. Eng. C 107, 110314 (2020)

    Google Scholar 

  43. U. Lucia, Physica A 406, 107–118 (2014)

    ADS  MathSciNet  Google Scholar 

  44. U. Lucia, Physica A 406, 1–11 (2014)

    ADS  MathSciNet  Google Scholar 

  45. S. Ijaz, M. Mushtaq, S. Munawar, N. Saleem, Int. J. Exergy 26, 418–434 (2018)

    Google Scholar 

  46. G.J. Reddy, B. Kethireddy, M. Kumar, M.M. Hoque, J. Mol. Liq. 252, 245–262 (2018)

    Google Scholar 

  47. T. Hayat, S. Nadeem, A.U. Khana, Eur. Phys. J. E 41, 75 (2018)

    Google Scholar 

  48. V.Y. Rudyak, A.V. Minakov, Eur. Phys. J. E 41, 15 (2018)

    Google Scholar 

  49. R. Sivaraj, B.R. Kumar, Int. J. Heat Mass Transf. 61, 119–128 (2013)

    Google Scholar 

  50. R. Nouri, D.D. Ganji, M. Hatami, Propuls. Power Res. 3, 96–105 (2014)

    Google Scholar 

  51. J. Rahimi, D.D. Ganji, M. Khaki, K. Hosseinzadeh, Alex. Eng. J. 56, 621–627 (2017)

    Google Scholar 

  52. Y.Z. Boutros, M.B. Abd-el-Malek, N.A. Bdran, H.S. Hassan, J. Comput. Appl. Math. 197, 465–94 (2006)

    ADS  MathSciNet  Google Scholar 

  53. S. Srinivas, A.S. Reddy, T.R. Ramamohan, A.K. Shukla, Ain Shams Eng. J. 5, 817–830 (2014)

    Google Scholar 

  54. S.J. Son, J. Reichel, B. He, M. Schuchman, S.B. Lee, J. Am. Chem. Soc. 127, 7316–7317 (2005)

    Google Scholar 

  55. A. Tomitaka, T. Koshi, S. Hatsugai, T. Yamada, Y. Takemura, J. Magn. Magn. Mater. 323, 1398–1403 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author H. Thameem Basha has formulated the mathematical model, solved numerically, and written the manuscript. The corresponding author R. Sivaraj has verified the mathematical model, solution procedure, numerical results, and improved the manuscript writing.

Corresponding author

Correspondence to R. Sivaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basha, H.T., Sivaraj, R. Exploring the heat transfer and entropy generation of Ag/Fe\(_3\)O\(_4\)-blood nanofluid flow in a porous tube: a collocation solution. Eur. Phys. J. E 44, 31 (2021). https://doi.org/10.1140/epje/s10189-021-00024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00024-x

Navigation