Skip to main content
Log in

An alternative analysis of contrast-variation neutron scattering data of casein micelles in semi-deuterated milk

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Contrast-variation small-angle neutron scattering (CV-SANS) is an excellent way to determine the structure of complex, hierarchical colloids, including self-assembled biological systems. In these experiments, the scattering length density of solvents is changed (by varying the ratio of water or \(\hbox {H}_2\hbox {O}\) and heavy water or \(\hbox {D}_2\hbox {O}\)) to highlight or mask scattering from different components in the system. This approach has been used with synthetic colloids, but it is also increasingly being used in the biological and food sciences. Perhaps the most studied food colloid is the “casein micelle,” a self-assembled nanometer-scale colloid of the structure-forming casein protein in milk. CV-SANS data available in the literature are typically analyzed using approximations, which may be invalid for casein micelles, as they have been shown to be sticky spheres. To assess the applicability of this approximate approach, a comprehensive set of CV-SANS data from casein micelles in diluted milk was reanalyzed using a model-based approach, where the casein micelles were formally treated as interacting spheres. In general, the conclusions of the previous study are reproduced, but this new approach makes it more straightforward to distinguish the different components in milk and can be applied to any dairy sample with known form of interparticle interactions, which offers the possibility of studying semi-deuterated milk at its native concentration.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The SANS data used for this analysis can be obtained from the Zenodo repository (https://doi.org/10.5281/zenodo.4071784)].

References

  1. T. Narayanan, H. Wacklin, O. Konovalov, R. Lund, Crystallogr. Rev. 23, 160 (2017)

    Article  Google Scholar 

  2. R. Ashkar, H.Z. Bilheux, H. Bordallo, R. Briber, D.J.E. Callaway, X. Cheng, X.Q. Chu, J.E. Curtis, M. Dadmun, P. Fenimore et al., Acta Crystallogr. Sect. D 74, 1129 (2018)

    Article  Google Scholar 

  3. D.P. Hoogerheide, V.T. Forsyth, K.A. Brown, Phys. Today 73, 37 (2020)

    Article  Google Scholar 

  4. J.F. Bunnett, R.A.Y. Jones, Pure Appl. Chem. 60, 1115 (1988)

    Article  Google Scholar 

  5. Arch. Biochem. Biophys. 272, 262 (1989)

  6. Eur. J. Biochem. 183, 1 (1989)

  7. Biol. Chem. Hoppe-Seyler 370, 1153 (1989)

  8. Biochem. J. 265, I (1990)

  9. R. Pynn, Los Alamos Sci. 19, 1 (1990)

    Google Scholar 

  10. I. Grillo, in Soft Matter Characterization, ed. by R. Borsali, R. Pecora (Springer, Netherlands, 2008), pp. 723–782, ISBN 978-1-4020-4464-9

  11. M.J. Hollamby, Phys. Chem. Chem. Phys. 15, 10566 (2013)

    Article  Google Scholar 

  12. B. Hammouda, Probing Nanoscale Structures—The SANS Toolbox, http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf

  13. A. Lopez-Rubio, E.P. Gilbert, Trends Food Sci. Tech. 20, 576 (2009)

    Article  Google Scholar 

  14. E.P. Gilbert, A. Lopez-Rubio, M.J. Gidley, Characterisation Techniques in Food Materials Science (Wiley, Chichester, 2012), chap. 3, pp. 52–93

  15. E.P. Gilbert, Curr. Opin. Colloid Interface Sci. 42, 55 (2019)

    Article  Google Scholar 

  16. V.F. Sears, Neutron News 3, 26 (1992)

    Article  Google Scholar 

  17. C. Kealley, A. Sokolova, G. Kearley, E. Kemner, M. Russina, A. Faraone, W. Hamilton, E. Gilbert, Biochimica et Biophysica Acta (BBA) - Proteins Proteom. 1804, 34 (2010)

    Article  Google Scholar 

  18. M. Di Bari, F. Cavatorta, A. Deriu, G. Albanese, Biophys. J. 81, 1190 (2001)

    Article  Google Scholar 

  19. M. Di Bari, A. Deriu, G. Albanese, F. Cavatorta, Chem. Phys. 292, 333 (2003)

    Article  Google Scholar 

  20. L.J. Smith, D.L. Price, Z. Chowdhuri, J.W. Brady, M.L. Saboungi, J. Chem. Phys. 120, 3527 (2004)

    Article  ADS  Google Scholar 

  21. E. Bellocco, D. Barreca, G. Laganà, U. Leuzzi, F. Migliardo, R.L. Torre, G. Galli, A. Galtieri, L. Minutoli, F. Squadrito, Chem. Phys. 345, 191 (2008)

    Article  Google Scholar 

  22. H. Jansson, W.S. Howells, J. Swenson, J. Phys. Chem. B 110, 13786 (2006)

    Article  Google Scholar 

  23. J. Sjöström, F. Kargl, F. Fernandez-Alonso, J. Swenson, J. Phys.: Condens. Matter 19, 415119 (2007)

    Google Scholar 

  24. O. Rezhdo, S. Di Maio, P. Le, K.C. Littrell, R.L. Carrier, S.H. Chen, J. Colloid Interface Sci. 499, 189 (2017)

    Article  ADS  Google Scholar 

  25. D. Pignol, L. Ayvazian, B. Kerfelec, P. Timmins, I. Crenon, J. Hermoso, J.C. Fontecilla-Camps, C. Chapus, J. Biol. Chem. 275, 4220 (2000)

    Article  Google Scholar 

  26. B.I. Zielbauer, A.J. Jackson, S. Maurer, G. Waschatko, M. Ghebremedhin, S.E. Rogers, R.K. Heenan, L. Porcar, T.A. Vilgis, J. Colloid Interface Sci. 529, 197 (2018)

    Article  ADS  Google Scholar 

  27. P.J. Jenkins, A.M. Donald, Polymer 37, 5559 (1996)

    Article  Google Scholar 

  28. I. Grillo, Colloids Surf. A: Physicochem. Eng. Asp. 225, 153 (2003)

    Article  Google Scholar 

  29. L. Chiappisi, I. Grillo, ACS Omega 3, 15407 (2018)

    Article  Google Scholar 

  30. H.B. Stuhrmann, J. Appl. Cryst. 40, s23 (2007)

    Article  Google Scholar 

  31. W.T. Heller, Acta Crystallogr. Sect. D 66, 1213 (2010)

    Article  Google Scholar 

  32. T. Croguennec, R. Jeantet, P. Schuck, From Milk to Dairy Products (Wiley, Hoboken, 2016), chap. 1, pp. 1–63, 1st edn., ISBN 9781119296225

  33. D.G. Dalgleish, Soft Matter 7, 2265 (2011)

    Article  ADS  Google Scholar 

  34. C.G. de Kruif, T. Huppertz, V.S. Urban, A.V. Petukhov, Adv. Colloid Interface Sci. 171–172, 36 (2012)

    Article  Google Scholar 

  35. C.G. De Kruif, J. Appl. Cryst. 47, 1479 (2014)

    Article  Google Scholar 

  36. P.H. Stothart, D.J. Cebula, J. Mol. Biol. 160, 391 (1982)

    Article  Google Scholar 

  37. P.H. Stothart, J. Mol. Biol. 208, 635 (1989)

    Article  Google Scholar 

  38. S. Hansen, R. Bauer, S.B. Lomholt, K. Bruun Quist, J.S. Pedersen, K. Mortensen, Eur. Biophys. J. 24, 143 (1996)

    Article  Google Scholar 

  39. C.G. de Kruif, R. Tuinier, C. Holt, P.A. Timmins, H.S. Rollema, Langmuir 18, 4885 (2002)

    Article  Google Scholar 

  40. C. Holt, C. de Kruif, R. Tuinier, P. Timmins, Colloids Surf., A 213, 275 (2003)

    Article  Google Scholar 

  41. R.H. Tromp, W.G. Bouwman, Food Hydrocoll. 21, 154 (2007)

    Article  Google Scholar 

  42. T. Huppertz, C.G. de Kruif, Int. Dairy J. 18, 556 (2008)

    Article  Google Scholar 

  43. L.F. van Heijkamp, I.M. de Schepper, M. Strobl, R.H. Tromp, J.R. Heringa, W.G. Bouwman, J. Phys. Chem. A 114, 2412 (2010)

    Article  Google Scholar 

  44. A.J. Jackson, D.J. McGillivray, Chem. Commun. 47, 487 (2011)

    Article  Google Scholar 

  45. A. Bouchoux, J. Ventureira, G. Gésan-Guiziou, F. Garnier-Lambrouin, P. Qu, C. Pasquier, S. Pézennec, R. Schweins, B. Cabane, Soft Matter 11, 389 (2015)

    Article  ADS  Google Scholar 

  46. C.P. Adams, N. Callaghan-Patrachar, F. Peyronel, J. Barker, D.A. Pink, A.G. Marangoni, Food Struct. 21, 100120 (2019)

    Article  Google Scholar 

  47. A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955)

    MATH  Google Scholar 

  48. H.B. Stuhrmann, J. Appl. Cryst. 7, 173 (1974)

    Article  Google Scholar 

  49. H.B. Stuhrmann, R.G. Kirste, Z. Phys, Chemistry 46, 247 (1965)

    Google Scholar 

  50. K. Ibel, H. Stuhrmann, J. Mol. Biol. 93, 255 (1975)

    Article  Google Scholar 

  51. B. Jacrot, Rep. Prog. Phys. 39, 911 (1976)

    Article  ADS  Google Scholar 

  52. I. Marković, R.H. Ottewill, D.J. Cebula, I. Field, J.F. Marsh, Colloid Polym. Sci. 262, 648 (1984)

    Article  Google Scholar 

  53. J.A.H.M. Moonen, C.G. de Kruif, A. Vrij, S. Bantle, Colloid Polym. Sci. 266, 836 (1988)

    Article  Google Scholar 

  54. R.H. Ottewill, E. Sinagra, I.P. MacDonald, J.F. Marsh, R.K. Heenan, Colloid Polym. Sci. 270, 602 (1992)

    Article  Google Scholar 

  55. R. Kemp, R. Sanchez, K.J. Mutch, P. Bartlett, Langmuir 26, 6967 (2010)

    Article  Google Scholar 

  56. A.V. Smirnov, I.N. Deryabin, B.A. Fedorov, J. Appl. Cryst. 48, 1089 (2015)

    Article  Google Scholar 

  57. H. Lindmark-Månsson, R. Fondén, H.E. Pettersson, Int. Dairy J. 13, 409 (2003)

    Article  Google Scholar 

  58. G.N. Smith, E. Brok, M.V. Christiansen, L. Ahrné, Soft Matter 16, 9955 (2020)

    Article  ADS  Google Scholar 

  59. G.N. Smith, Food Hydrocoll. 113, 106511 (2021)

    Article  Google Scholar 

  60. I. Marković, R.H. Ottewill, Colloid Polym. Sci. 264, 65 (1986)

    Article  Google Scholar 

  61. K. Ibel, J. Appl. Cryst. 9, 296 (1976)

    Article  Google Scholar 

  62. P. Lindner, R. May, P. Timmins, Physica B: Condens. Matter 180–181, 967 (1992)

    Article  ADS  Google Scholar 

  63. P. Lindner, R. Schweins, Neutron News 21, 15 (2010)

    Article  Google Scholar 

  64. M.A. Boyle, A.L. Samaha, A.M. Rodewald, A.N. Hoffmann, Comput. Hum. Behav. 29, 1023 (2013)

    Article  Google Scholar 

  65. I. Breßler, J. Kohlbrecher, A.F. Thünemann, J. Appl. Cryst. 48, 1587 (2015)

    Article  Google Scholar 

  66. Lord Rayleigh, Proc. R. Soc. Lond. A 84, 25 (1910)

    Article  ADS  Google Scholar 

  67. J. Kohlbrecher, User guide for the SASfit software package: A program for fitting elementary structural models to small angle scattering data (April 23, 2020), Paul Scherrer Institute, Villigen, Switzerland (2020), https://github.com/SASfit/SASfit/blob/master/doc/manual/sasfit.pdf

  68. C.G. de Kruif, R.P. May, Eur. J. Biochem. 200, 431 (1991)

    Article  Google Scholar 

  69. R.J. Baxter, J. Chem. Phys. 49, 2770 (1968)

    Article  ADS  Google Scholar 

  70. C.G. de Kruif, J. Dairy Sci. 81, 3019 (1998)

    Article  Google Scholar 

  71. C.G. de Kruif, J. Colloid Interface Sci. 185, 19 (1997)

    Article  ADS  Google Scholar 

  72. G. Stell, J. Stat. Phys. 63, 1203 (1991)

    Article  ADS  Google Scholar 

  73. S. Buzzaccaro, R. Rusconi, R. Piazza, Phys. Rev. Lett. 99, 098301 (2007)

    Article  ADS  Google Scholar 

  74. M.A. Miller, D. Frenkel, J. Chem. Phys. 121, 535 (2004)

    Article  ADS  Google Scholar 

  75. H. Verduin, J.K. Dhont, J. Colloid Interface Sci. 172, 425 (1995)

    Article  ADS  Google Scholar 

  76. H.G. Ruis, P. Venema, E. van der Linden, Food Hydrocoll. 21, 545 (2007)

    Article  Google Scholar 

  77. J.S. Pedersen, J. Appl. Cryst. 27, 595 (1994)

    Article  Google Scholar 

  78. D. Gazzillo, A. Giacometti, J. Chem. Phys. 113, 9837 (2000)

    Article  ADS  Google Scholar 

  79. F. Pignon, G. Belina, T. Narayanan, X. Paubel, A. Magnin, G. Gésan-Guiziou, J. Chem. Phys. 121, 8138 (2004)

    Article  ADS  Google Scholar 

  80. S. Marchin, J.L. Putaux, F. Pignon, J. Léonil, J. Chem. Phys. 126, 045101 (2007)

    Article  ADS  Google Scholar 

  81. F. Pignon, G. Belina, T. Narayanan, X. Paubel, A. Magnin, G. Gésan-Guiziou, arXiv p. arXiv:0812.0879 (2008), 0812.0879

  82. D.A. Pink, F. Peyronel, B. Quinn, A.G. Marangoni, Phys. Fluids 31, 077105 (2019)

    Article  ADS  Google Scholar 

  83. F. Peyronel, A.G. Marangoni, D.A. Pink, Food Res. Int. 129, 108846 (2020)

    Article  Google Scholar 

  84. G. Beaucage, J. Appl. Cryst. 28, 717 (1995)

    Article  Google Scholar 

  85. G. Beaucage, J. Appl. Cryst. 29, 134 (1996)

    Article  Google Scholar 

  86. B. Ingham, A. Smialowska, G.D. Erlangga, L. Matia-Merino, N.M. Kirby, C. Wang, R.G. Haverkamp, A.J. Carr, Soft Matter 12, 6937 (2016)

    Article  ADS  Google Scholar 

  87. G. Fournet, Bull. Soc. Fr. Minér. Crist. 74, 39 (1951)

    Google Scholar 

  88. Y. Efimova, A. van Well, U. Hanefeld, B. Wierczinski, W.G. Bouwman, Physica B: Condens. Matter 350, E877 (2004)

    Article  Google Scholar 

  89. R. Jost, Milk and Dairy Products (American Cancer Society, 2007), ISBN 9783527306732

  90. D.H. Wheeler, R.W. Riemenschneider, C.E. Sando, J. Biol. Chem. 132, 687 (1940)

    Article  Google Scholar 

  91. CRC, in CRC Handbook of Chemistry and Physics, ed. by W.M. Haynes (CRC Press, 2011), chap. Physical Constants of Organic Compounds, 92nd edn

Download references

Acknowledgements

While at the Niels Bohr Institute, GNS was funded by the Innovation Fund Denmark (IFD) as part of project Linking Industry to Neutrons and X-rays (LINX) under File No. 5152-00005B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory N. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.N. An alternative analysis of contrast-variation neutron scattering data of casein micelles in semi-deuterated milk. Eur. Phys. J. E 44, 5 (2021). https://doi.org/10.1140/epje/s10189-021-00023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00023-y

Navigation