Skip to main content
Log in

Control over self-assembled Janus clusters by the strength of magnetic field in \(\hbox {H}_{2}\hbox {O}_{2}\)

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Colloidal Janus microparticles can be propelled by controlled chemical reactions on their surfaces. Such microswimmers have been used as model systems for the behavior on the microscale and as carriers for cargo to well-defined positions in hard-to-access areas. Here we demonstrate the propagation motion of clusters of magnetic Janus particles driven by the catalytic decomposition of \(\hbox {H}_2\hbox {O}_2\) on their metallic caps. The magnetic moments of their caps lead to certain spatial arrangements of Janus particles, which can be influenced by external magnetic fields. We investigate how the arrangement of the particles and caps determines the driven motion of the particle clusters. In addition, we show the influence of confining walls on the cluster motion, which will be encountered in any real-life biological system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data associated with this manuscript is deposited at http://doi.org/10.14278/rodare.824.]

Notes

  1. The video microscopy setup was adjusted in a way that particles on this plane are in the focal plane of the microscope. Thus, particles go out of focus when they leave this plane due to a perpendicular motion.

References

  1. K.E. Peyer, L. Zhang, B.J. Nelson, Nanoscale p. 14 (2013)

  2. O. Felfoul, M. Mohammadi, S. Taherkhani, D. De Lanauze, Y.Zhong Xu, D. Loghin, S. Essa, S. Jancik, D. Houle, M. Lafleur et al., Nat. Nanotechnol. 11, 941 (2016)

    Google Scholar 

  3. D. Schamel, A.G. Mark, J.G. Gibbs, C. Miksch, K.I. Morozov, A.M. Leshansky, P. Fischer, ACS Nano 8, 8794 (2014)

    Google Scholar 

  4. J. Li, P. Angsantikul, W. Liu, B. Esteban-Fernández de Ávila, X. Chang, E. Sandraz, Y. Liang, S. Zhu, Y. Zhang, C. Chen et al., Adv. Mater. 30, 1098 (2018)

    Google Scholar 

  5. L. Soler, S. Sánchez, Nanoscale 6, 7175 (2014)

    Google Scholar 

  6. W. Gao, J. Wang, ACS Nano 8, 3170 (2014)

    Google Scholar 

  7. A. Erbe, M. Zientara, L. Baraban, C. Kreidler, P. Leiderer, J. Phys. Condens. Matter 20, 404215 (2008)

    Google Scholar 

  8. J.R. Howse, R.A. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Google Scholar 

  9. L. Baraban, D. Makarov, O.G. Schmidt, G. Cuniberti, P. Leiderer, A. Erbe, Nanoscale 5, 1332 (2013)

    Google Scholar 

  10. L. Baraban, D. Makarov, M. Albrecht, N. Rivier, P. Leiderer, A. Erbe, Phys. Rev. E 77, 031407 (2008)

    Google Scholar 

  11. B. Ren, A. Ruditskiy, J.H. Song, I. Kretzschmar, Langmuir 28, 1149 (2012)

    Google Scholar 

  12. M. Neumann, A. Strobel, Y. Al-Saadawi, G. Steinbach, A. Erbe, S. Gemming, Phys. Status Solidi (A) Appl. Mater. Sci. 216, 1900506 (2019)

    Google Scholar 

  13. G. Steinbach, D. Nissen, M. Albrecht, E.V. Novak, P.A. Sánchez, S.S. Kantorovich, S. Gemming, A. Erbe, Soft Matter 12, 2737 (2016)

    Google Scholar 

  14. T.C. Ulbrich, D. Assmann, M. Albrecht, J. Appl. Phys. 104, 084311 (2008)

    Google Scholar 

  15. D. Allan, C. van der Wel, N. Keim, T.A. Caswell, D. Wieker, R. Verweij, C. Reid, Thierry, L. Grueter, K. Ramos et al., soft-matter/trackpy: Trackpy v0.4.2 (2019). https://doi.org/10.5281/zenodo.3492186

  16. J.Y. Tinevez, N. Perry, J. Schindelin, G.M. Hoopes, G.D. Reynolds, E. Laplantine, S.Y. Bednarek, S.L. Shorte, K.W. Eliceiri, Methods 115, 80 (2017)

    Google Scholar 

  17. A. Wittmeier, A. Leeth Holterhoff, J. Johnson, J.G. Gibbs, Langmuir 31, 10402 (2015)

    Google Scholar 

  18. D. Feldmann, P. Arya, N. Lomadze, A. Kopyshev, S. Santer, Appl. Phys. Lett. 115, 263701 (2019)

    Google Scholar 

  19. A. Majee, Eur. Phys. J. E 40, 1 (2017)

    Google Scholar 

  20. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    Google Scholar 

  21. A. Varma, T.D. Montenegro-Johnson, S. Michelin, Soft Matter 14, 7155 (2018)

    Google Scholar 

  22. G. Steinbach, M. Schreiber, D. Nissen, M. Albrecht, S. Gemming, A. Erbe, Phys. Rev. Res. 2, 23092 (2020)

    Google Scholar 

  23. F. Schmidt, B. Liebchen, H. Löwen, G. Volpe, J. Chem. Phys. 150, 094905 (2019)

    Google Scholar 

  24. H. Yu, A. Kopach, V.R. Misko, A.A. Vasylenko, D. Makarov, F. Marchesoni, F. Nori, L. Baraban, G. Cuniberti, Small 12, 5882 (2016)

    Google Scholar 

  25. J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)

    Google Scholar 

  26. F. Zhou, H. Wang, Z. Zhang, Langmuir 36, 11866 (2020)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jens Zscharschuch and Simon Stierle for their technical support involving methods and instruments used in the experiment. We also acknowledge Holger Lange for his help with a program for particle detection. We also would like to thank Prof. Sibylle Gemming for the insightful discussions. This work was financially supported by the German Science Foundation (DFG) grants ER 341/13-1 and ER 341/14-1.

Author information

Authors and Affiliations

Authors

Contributions

Y.A., A.E-V., and A.E. wrote the manuscript with input from M.H., P.Z., and M.A. Particles preparation and capping were done by Y.A. and M.H., respectively. The experiments, tracking, and analysis were done by Y.A. with the help of A.E-V.

Corresponding author

Correspondence to Artur Erbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaadawi, Y., Eichler-Volf, A., Heigl, M. et al. Control over self-assembled Janus clusters by the strength of magnetic field in \(\hbox {H}_{2}\hbox {O}_{2}\). Eur. Phys. J. E 44, 23 (2021). https://doi.org/10.1140/epje/s10189-021-00010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00010-3

Navigation