Skip to main content
Log in

Thermoosomosis in microfluidic devices containing a temperature gradient normal to the channel walls

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We analyze a microfluidic pump from the literature that utilizes a flat channel with boundary walls at different temperatures and tilted elongated pillars within in order to construct an adequate theory for designing devices in which the temperature gradient between channel walls is transformed into a longitudinal temperature gradient along the channel length. The action of the device is based on thermoosmosis in the secondary longitudinal temperature gradient associated with the specific geometry of the device, which can be described using physicochemical hydrodynamics without invoking the concept of thermophoretic force. We also describe a rotating drive device based on the same principle and design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Tan, M. Yang, M. Ripoll, Phys. Rev. Appl. 11, 054004 (2019)

    Article  ADS  Google Scholar 

  2. S. Semenov, M.E. Schimpf, J. Phys. Chem. C 119, 25628 (2015)

    Article  Google Scholar 

  3. S. Semenov, M.E. Schimpf, J. Phys. Chem. C 120, 22597 (2016)

    Article  Google Scholar 

  4. M. Yang, R. Liu, M. Ripoll, K. Chen, Nanoscale 6, 13550 (2014)

    Article  ADS  Google Scholar 

  5. M. Yang, R. Liu, M. Ripoll, K. Chen, Lab Chip 15, 3912 (2015)

    Article  Google Scholar 

  6. Z. Tan, M. Yang, M. Ripoll, Soft Matter 13, 7283 (2017)

    Article  ADS  Google Scholar 

  7. J.K.G. Dhont, J. Chem. Phys. 120, 1642 (2004)

    Article  ADS  Google Scholar 

  8. J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)

    Article  Google Scholar 

  9. D. Kondepudi, I. Prigogine, Modern Thermodynamics, second edition (Wiley, 2015) Chapt. 16

  10. W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)

    Article  ADS  Google Scholar 

  11. Semen N. Semenov, Martin E. Schimpf, C. R. Mec. 339, 335 (2011)

    Article  ADS  Google Scholar 

  12. M. Yang, M. Ripoll, J. Phys.: Condens. Matter 24, 195101 (2012)

    ADS  Google Scholar 

  13. M. Yang, M. Ripoll, J. Chem. Phys. 136, 204508 (2012)

    Article  ADS  Google Scholar 

  14. G. Galliero, S. Volz, J. Chem. Phys. 128, 064505 (2008)

    Article  ADS  Google Scholar 

  15. S. Semenov, M.E. Schimpf, Phys. Rev. E 69, 011201 (2004)

    Article  ADS  Google Scholar 

  16. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    Article  ADS  Google Scholar 

  17. S.N. Semenov, M.E. Schimpf, Phys.-Usp. 52, 1045 (2009)

    Article  ADS  Google Scholar 

  18. B.V. Derjaguin, S.S. Dukhin, M.M. Koptelova, J. Colloid Interface Sci. 38, 584 (1972)

    Article  ADS  Google Scholar 

  19. J.N. Israelashvili, Intermolecular and Surface Forces (Academic Press, 1992)

  20. R.J. Hunter, Foundations of Colloid Science, Vol. 1 (Oxford University Press, New York, 1987) Chapt. 9

  21. M.E. Schimpf, S.N. Semenov, J. Phys. Chem. B 104, 9935 (2000)

    Article  Google Scholar 

  22. S. Semenov, M.E. Schimpf, J. Phys. Chem. B 118, 3115 (2014)

    Article  Google Scholar 

  23. S. Semenov, M.E. Schimpf, J. Phys. Chem. B 119, 3510 (2015)

    Article  Google Scholar 

  24. E. Bringuier, A. Bourdon, Phys. Rev. E 67, 011404 (2003)

    Article  ADS  Google Scholar 

  25. E. Bringuier, A. Bourdon, J. Non-Equilib. Thermodyn. 32, 221 (2007)

    Article  ADS  Google Scholar 

  26. L.G. Loitsyanskii, Mechanics of Liquids and Gases International Series of Monographs in Aeronautics and Astronautics, Vol. 6 (Pergamon Press, 1966) Chapt. XI, Sect. 98

  27. M.E. Schimpf, K.D. Caldwell, J.C. Giddings, Field-Flow Fractionation Handbook (Wiley Interscience, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semen N. Semenov.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, S.N., Schimpf, M.E. Thermoosomosis in microfluidic devices containing a temperature gradient normal to the channel walls. Eur. Phys. J. E 42, 141 (2019). https://doi.org/10.1140/epje/i2019-11914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11914-8

Keywords

Navigation